These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 14601657)

  • 21. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns.
    Fu X; Duc LT; Fontana S; Bong BB; Tinjuangjun P; Sudhakar D; Twyman RM; Christou P; Kohli A
    Transgenic Res; 2000 Feb; 9(1):11-9. PubMed ID: 10853265
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved cotton transformation protocol mediated by Agrobacterium and biolistic combined-methods.
    Ribeiro TP; Lourenço-Tessutti IT; de Melo BP; Morgante CV; Filho AS; Lins CBJ; Ferreira GF; Mello GN; Macedo LLP; Lucena WA; Silva MCM; Oliveira-Neto OB; Grossi-de-Sa MF
    Planta; 2021 Jul; 254(2):20. PubMed ID: 34216275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency.
    Sugita K; Kasahara T; Matsunaga E; Ebinuma H
    Plant J; 2000 Jun; 22(5):461-9. PubMed ID: 10849362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transformation of oil palm using Agrobacterium tumefaciens.
    Izawati AM; Parveez GK; Masani MY
    Methods Mol Biol; 2012; 847():177-88. PubMed ID: 22351008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts.
    Rathore KS; Chowdhury VK; Hodges TK
    Plant Mol Biol; 1993 Mar; 21(5):871-84. PubMed ID: 8467080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selection of transformed plants.
    Jones HD; Sparks CA
    Methods Mol Biol; 2009; 478():23-37. PubMed ID: 19009437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment.
    Yao Q; Cong L; Chang JL; Li KX; Yang GX; He GY
    J Exp Bot; 2006; 57(14):3737-46. PubMed ID: 17032730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection.
    Daniell H; Muthukumar B; Lee SB
    Curr Genet; 2001 Apr; 39(2):109-16. PubMed ID: 11405095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane.
    Zhao Y; Kim JY; Karan R; Jung JH; Pathak B; Williamson B; Kannan B; Wang D; Fan C; Yu W; Dong S; Srivastava V; Altpeter F
    Plant Mol Biol; 2019 Jun; 100(3):247-263. PubMed ID: 30919152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants.
    Zhang W; Subbarao S; Addae P; Shen A; Armstrong C; Peschke V; Gilbertson L
    Theor Appl Genet; 2003 Nov; 107(7):1157-68. PubMed ID: 14513214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-efficiency biolistic co-transformation and regeneration of 'Chardonnay' (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes.
    Vidal JR; Kikkert JR; Wallace PG; Reisch BI
    Plant Cell Rep; 2003 Nov; 22(4):252-60. PubMed ID: 12908080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An in planta biolistic method for stable wheat transformation.
    Hamada H; Linghu Q; Nagira Y; Miki R; Taoka N; Imai R
    Sci Rep; 2017 Sep; 7(1):11443. PubMed ID: 28904403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in development of marker-free transgenic plants: regulation and biosafety concern.
    Tuteja N; Verma S; Sahoo RK; Raveendar S; Reddy IN
    J Biosci; 2012 Mar; 37(1):167-97. PubMed ID: 22357214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inheritance analysis of herbicide-resistant transgenic soybean lines.
    Zhang Y; Yang BY; Chen SY
    Yi Chuan Xue Bao; 2006 Dec; 33(12):1105-11. PubMed ID: 17185170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biolistics-Mediated Gene Delivery in Sugarcane.
    Joyce PA; Sun Y
    Methods Mol Biol; 2020; 2124():217-228. PubMed ID: 32277456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of antibiotic marker-free creeping bentgrass resistance against herbicides.
    Lee KW; Kim KY; Kim KH; Lee BH; Kim JS; Lee SH
    Acta Biochim Biophys Sin (Shanghai); 2011 Jan; 43(1):13-8. PubMed ID: 21173055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selectable marker genes in transgenic plants: applications, alternatives and biosafety.
    Miki B; McHugh S
    J Biotechnol; 2004 Feb; 107(3):193-232. PubMed ID: 14736458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The application of GBS markers for extending the dense genetic map of rye (Secale cereale L.) and the localization of the Rfc1 gene restoring male fertility in plants with the C source of sterility-inducing cytoplasm.
    Milczarski P; Hanek M; Tyrka M; Stojałowski S
    J Appl Genet; 2016 Nov; 57(4):439-451. PubMed ID: 27085345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of transgene repeat formation and promoter methylation in transgenic plants.
    Kumar S; Fladung M
    Biotechniques; 2000 Jun; 28(6):1128 1130, 1132, 1134 passim. PubMed ID: 10868278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of transgenic energy cane plants with integration of minimal transgene expression cassette.
    Fouad WM; Hao W; Xiong Y; Steeves C; Sandhu SK; Altpeter F
    Curr Pharm Biotechnol; 2015; 16(5):407-13. PubMed ID: 25751171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.