BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 14601669)

  • 1. Deletion of all Cochliobolus heterostrophus monofunctional catalase-encoding genes reveals a role for one in sensitivity to oxidative stress but none with a role in virulence.
    Robbertse B; Yoder OC; Nguyen A; Schoch CL; Turgeon BG
    Mol Plant Microbe Interact; 2003 Nov; 16(11):1013-21. PubMed ID: 14601669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron, oxidative stress, and virulence: roles of iron-sensitive transcription factor Sre1 and the redox sensor ChAp1 in the maize pathogen Cochliobolus heterostrophus.
    Zhang N; MohdZainudin NA; Scher K; Condon BJ; Horwitz BA; Turgeon BG
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1473-85. PubMed ID: 23980626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals.
    Lev S; Hadar R; Amedeo P; Baker SE; Yoder OC; Horwitz BA
    Eukaryot Cell; 2005 Feb; 4(2):443-54. PubMed ID: 15701806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A decarboxylase encoded at the Cochliobolus heterostrophus translocation-associated Tox1B locus is required for polyketide (T-toxin) biosynthesis and high virulence on T-cytoplasm maize.
    Rose MS; Yun SH; Asvarak T; Lu SW; Yoder OC; Turgeon BG
    Mol Plant Microbe Interact; 2002 Sep; 15(9):883-93. PubMed ID: 12236595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic interaction of the stress response factors ChAP1 and Skn7 in the maize pathogen Cochliobolus heterostrophus.
    Shalaby S; Larkov O; Lamdan NL; Horwitz BA
    FEMS Microbiol Lett; 2014 Jan; 350(1):83-9. PubMed ID: 24164316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses.
    Igbaria A; Lev S; Rose MS; Lee BN; Hadar R; Degani O; Horwitz BA
    Mol Plant Microbe Interact; 2008 Jun; 21(6):769-80. PubMed ID: 18473669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Six new genes required for production of T-toxin, a polyketide determinant of high virulence of Cochliobolus heterostrophus to maize.
    Inderbitzin P; Asvarak T; Turgeon BG
    Mol Plant Microbe Interact; 2010 Apr; 23(4):458-72. PubMed ID: 20192833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cochliobolus heterostrophus Llm1 - a Lae1-like methyltransferase regulates T-toxin production, virulence, and development.
    Bi Q; Wu D; Zhu X; Gillian Turgeon B
    Fungal Genet Biol; 2013 Feb; 51():21-33. PubMed ID: 23261970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two polyketide synthase-encoding genes are required for biosynthesis of the polyketide virulence factor, T-toxin, by Cochliobolus heterostrophus.
    Baker SE; Kroken S; Inderbitzin P; Asvarak T; Li BY; Shi L; Yoder OC; Turgeon BG
    Mol Plant Microbe Interact; 2006 Feb; 19(2):139-49. PubMed ID: 16529376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive iron assimilation and intracellular siderophores assist extracellular siderophore-driven iron homeostasis and virulence.
    Condon BJ; Oide S; Gibson DM; Krasnoff SB; Turgeon BG
    Mol Plant Microbe Interact; 2014 Aug; 27(8):793-808. PubMed ID: 24762221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A ToxA-like protein from Cochliobolus heterostrophus induces light-dependent leaf necrosis and acts as a virulence factor with host selectivity on maize.
    Lu S; Gillian Turgeon B; Edwards MC
    Fungal Genet Biol; 2015 Aug; 81():12-24. PubMed ID: 26051492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter- and 3'-untranslated region exchange experiments in the Arabidopsis cat2 photorespiratory mutant.
    Hu YQ; Liu S; Yuan HM; Li J; Yan DW; Zhang JF; Lu YT
    Plant Cell Environ; 2010 Oct; 33(10):1656-70. PubMed ID: 20492555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced virulence caused by meiotic instability of the TOX2 chromosome of the maize pathogen Cochliobolus carbonum.
    Pitkin JW; Nikolskaya A; Ahn JH; Walton JD
    Mol Plant Microbe Interact; 2000 Jan; 13(1):80-7. PubMed ID: 10656588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus.
    Wu D; Oide S; Zhang N; Choi MY; Turgeon BG
    PLoS Pathog; 2012 Feb; 8(2):e1002542. PubMed ID: 22383877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress.
    Lee BN; Kroken S; Chou DY; Robbertse B; Yoder OC; Turgeon BG
    Eukaryot Cell; 2005 Mar; 4(3):545-55. PubMed ID: 15755917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creating and screening Cochliobolus heterostrophus non-ribosomal peptide synthetase mutants.
    Turgeon BG; Oide S; Bushley K
    Mycol Res; 2008 Feb; 112(Pt 2):200-6. PubMed ID: 18280721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of beta-glucanase genes from the plant-pathogenic fungus Cochliobolus carbonum.
    Kim H; Ahn JH; Görlach JM; Caprari C; Scott-Craig JS; Walton JD
    Mol Plant Microbe Interact; 2001 Dec; 14(12):1436-43. PubMed ID: 11768539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virulence, Host-Selective Toxin Production, and Development of Three Cochliobolus Phytopathogens Lacking the Sfp-Type 4'-Phosphopantetheinyl Transferase Ppt1.
    Zainudin NA; Condon B; De Bruyne L; Van Poucke C; Bi Q; Li W; Höfte M; Turgeon BG
    Mol Plant Microbe Interact; 2015 Oct; 28(10):1130-41. PubMed ID: 26168137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene.
    Bueso E; Alejandro S; Carbonell P; Perez-Amador MA; Fayos J; Bellés JM; Rodriguez PL; Serrano R
    Plant J; 2007 Dec; 52(6):1052-65. PubMed ID: 17931347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation.
    Horwitz BA; Sharon A; Lu SW; Ritter V; Sandrock TM; Yoder OC; Turgeon BG
    Fungal Genet Biol; 1999 Feb; 26(1):19-32. PubMed ID: 10072317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.