These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 14601672)

  • 1. Molecular analysis of the pathway for the synthesis of thiol tripeptides in the model legume Lotus japonicus.
    Matamoros MA; Clemente MR; Sato S; Asamizu E; Tabata S; Ramos J; Moran JF; Stiller J; Gresshoff PM; Becana M
    Mol Plant Microbe Interact; 2003 Nov; 16(11):1039-46. PubMed ID: 14601672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione and homoglutathione synthetases of legume nodules. Cloning, expression, and subcellular localization.
    Moran JF; Iturbe-Ormaetxe I; Matamoros MA; Rubio MC; Clemente MR; Brewin NJ; Becana M
    Plant Physiol; 2000 Nov; 124(3):1381-92. PubMed ID: 11080313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione and homoglutathione synthesis in legume root nodules.
    Matamoros MA; Moran JF; Iturbe-Ormaetxe I; Rubio MC; Becana M
    Plant Physiol; 1999 Nov; 121(3):879-88. PubMed ID: 10557236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones.
    Clemente MR; Bustos-Sanmamed P; Loscos J; James EK; Pérez-Rontomé C; Navascués J; Gay M; Becana M
    J Exp Bot; 2012 Jun; 63(10):3923-34. PubMed ID: 22442424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial gamma-glutamylcysteine synthetase isoform.
    Schäfer HJ; Haag-Kerwer A; Rausch T
    Plant Mol Biol; 1998 May; 37(1):87-97. PubMed ID: 9620267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homoglutathione synthetase and glutathione synthetase in drought-stressed cowpea leaves: expression patterns and accumulation of low-molecular-weight thiols.
    Cruz de Carvalho MH; Brunet J; Bazin J; Kranner I; d' Arcy-Lameta A; Zuily-Fodil Y; Contour-Ansel D
    J Plant Physiol; 2010 Apr; 167(6):480-7. PubMed ID: 20036031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling.
    Gómez LD; Vanacker H; Buchner P; Noctor G; Foyer CH
    Plant Physiol; 2004 Apr; 134(4):1662-71. PubMed ID: 15047902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress.
    Rivera-Becerril F; van Tuinen D; Martin-Laurent F; Metwally A; Dietz KJ; Gianinazzi S; Gianinazzi-Pearson V
    Mycorrhiza; 2005 Dec; 16(1):51-60. PubMed ID: 16136340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development.
    Ott T; van Dongen JT; Günther C; Krusell L; Desbrosses G; Vigeolas H; Bock V; Czechowski T; Geigenberger P; Udvardi MK
    Curr Biol; 2005 Mar; 15(6):531-5. PubMed ID: 15797021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoters of orthologous Glycine max and Lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants.
    Nontachaiyapoom S; Scott PT; Men AE; Kinkema M; Schenk PM; Gresshoff PM
    Mol Plant Microbe Interact; 2007 Jul; 20(7):769-80. PubMed ID: 17601165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots.
    Innocenti G; Pucciariello C; Le Gleuher M; Hopkins J; de Stefano M; Delledonne M; Puppo A; Baudouin E; Frendo P
    Planta; 2007 May; 225(6):1597-602. PubMed ID: 17195940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants.
    Ramos J; Clemente MR; Naya L; Loscos J; Pérez-Rontomé C; Sato S; Tabata S; Becana M
    Plant Physiol; 2007 Mar; 143(3):1110-8. PubMed ID: 17208961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Medicago truncatula homoglutathione synthetase is derived from glutathione synthetase by gene duplication.
    Frendo P; Jiménez MJ; Mathieu C; Duret L; Gallesi D; Van de Sype G; Hérouart D; Puppo A
    Plant Physiol; 2001 Aug; 126(4):1706-15. PubMed ID: 11500568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa (Medicago sativa L.).
    Pasternak T; Asard H; Potters G; Jansen MA
    Plant Physiol Biochem; 2014 Jan; 74():16-23. PubMed ID: 24246670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal organization of sucrose metabolism in Lotus japonicus nitrogen-fixing nodules suggests a role for the elusive alkaline/neutral invertase.
    Flemetakis E; Efrose RC; Ott T; Stedel C; Aivalakis G; Udvardi MK; Katinakis P
    Plant Mol Biol; 2006 Sep; 62(1-2):53-69. PubMed ID: 16897473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and expression analysis of genes encoding phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase of Lotus japonicus, a model legume.
    Nakagawa T; Izumi T; Banba M; Umehara Y; Kouchi H; Izui K; Hata S
    Mol Plant Microbe Interact; 2003 Apr; 16(4):281-8. PubMed ID: 12744456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Regulation of Pea (
    Ivanova KA; Chernova EN; Kulaeva OA; Tsyganova AV; Kusakin PG; Russkikh IV; Tikhonovich IA; Tsyganov VE
    Front Plant Sci; 2022; 13():843565. PubMed ID: 35432395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula.
    Frendo P; Harrison J; Norman C; Hernández Jiménez MJ; Van de Sype G; Gilabert A; Puppo A
    Mol Plant Microbe Interact; 2005 Mar; 18(3):254-9. PubMed ID: 15782639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of genomic clones and expression analysis of the three types of superoxide dismutases during nodule development in Lotus japonicus.
    Rubio MC; Becana M; Sato S; James EK; Tabata S; Spaink HP
    Mol Plant Microbe Interact; 2007 Mar; 20(3):262-75. PubMed ID: 17378429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lotus japonicus: legume research in the fast lane.
    Udvardi MK; Tabata S; Parniske M; Stougaard J
    Trends Plant Sci; 2005 May; 10(5):222-8. PubMed ID: 15882654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.