These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 14601834)

  • 1. Extracolumn band broadening in capillary liquid chromatography.
    Prüss A; Kempter C; Gysler J; Jira T
    J Chromatogr A; 2003 Oct; 1016(2):129-41. PubMed ID: 14601834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of packed capillary liquid chromatography columns and comparison with conventional-size columns.
    Prüss A; Kempter C; Gysler J; Jira T
    J Chromatogr A; 2004 Mar; 1030(1-2):167-76. PubMed ID: 15043266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow rate dependent extra-column variance from injection in capillary liquid chromatography.
    Aggarwal P; Liu K; Sharma S; Lawson JS; Dennis Tolley H; Lee ML
    J Chromatogr A; 2015 Feb; 1380():38-44. PubMed ID: 25591400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiochemical detection for packed capillary liquid chromatography-mass spectrometry.
    Onisko BC
    J Am Soc Mass Spectrom; 2002 Jan; 13(1):82-4. PubMed ID: 11777202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary action liquid chromatography.
    Zhang B; Bergström ET; Goodall DM; Myers P
    J Sep Sci; 2009 Jun; 32(11):1831-7. PubMed ID: 19266548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple method for the quantitative examination of extra column band broadening in microchromatographic systems.
    Beisler AT; Schaefer KE; Weber SG
    J Chromatogr A; 2003 Feb; 986(2):247-51. PubMed ID: 12597631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sample enrichment by using monolithic precolumns in microcolumn liquid chromatography.
    Lim LW; Hirose K; Tatsumi S; Uzu H; Mizukami M; Takeuchi T
    J Chromatogr A; 2004 Apr; 1033(2):205-12. PubMed ID: 15088740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and numerical study of band-broadening effects associated with analyte transfer in microfluidic devices for spatial two-dimensional liquid chromatography created by additive manufacturing.
    Adamopoulou T; Nawada S; Deridder S; Wouters B; Desmet G; Schoenmakers PJ
    J Chromatogr A; 2019 Aug; 1598():77-84. PubMed ID: 30929867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring a reversible adaptation of conventional HPLC for capillary-scale operation.
    Cardenas Contreras EM; Tanis E; Lanças FM; Vargas Medina DA
    J Chromatogr A; 2024 Aug; 1730():465021. PubMed ID: 38897112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximate transient and long time limit solutions for the band broadening induced by the thin sidewall-layer in liquid chromatography columns.
    Broeckhoven K; Desmet G
    J Chromatogr A; 2007 Nov; 1172(1):25-39. PubMed ID: 17935721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical basis for parameter selection and instrument design in comprehensive size-exclusion chromatography x liquid chromatography.
    Bedani F; Kok WT; Janssen HG
    J Chromatogr A; 2006 Nov; 1133(1-2):126-34. PubMed ID: 16959256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent developments in microcolumn liquid chromatography.
    Vissers JP
    J Chromatogr A; 1999 Sep; 856(1-2):117-43. PubMed ID: 10526786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of bovine milk caseins on organic monolithic columns: an integrated capillary liquid chromatography-high resolution mass spectrometry approach for the study of time-dependent casein degradation.
    Pierri G; Kotoni D; Simone P; Villani C; Pepe G; Campiglia P; Dugo P; Gasparrini F
    J Chromatogr A; 2013 Oct; 1313():259-69. PubMed ID: 24011725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversed-phase liquid chromatography on a microchip with sample injector and monolithic silica column.
    Ishida A; Yoshikawa T; Natsume M; Kamidate T
    J Chromatogr A; 2006 Nov; 1132(1-2):90-8. PubMed ID: 16876806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choosing sample volume to achieve maximum detection sensitivity and resolution with high-performance liquid chromatography columns of 1.0, 2.1 and 4.6 mm I.D.
    Bakalyar SR; Phipps C; Spruce B; Olsen K
    J Chromatogr A; 1997 Feb; 762(1-2):167-85. PubMed ID: 9098975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the minimization of the band-broadening contributions of a modern, very high pressure liquid chromatograph.
    Gritti F; Guiochon G
    J Chromatogr A; 2011 Jul; 1218(29):4632-48. PubMed ID: 21665213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview.
    Nazario CE; Silva MR; Franco MS; Lanças FM
    J Chromatogr A; 2015 Nov; 1421():18-37. PubMed ID: 26381569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High peak capacity separation of peptides through the serial connection of LC shell-packed columns.
    Donato P; Dugo P; Cacciola F; Dugo G; Mondello L
    J Sep Sci; 2009 Apr; 32(8):1129-36. PubMed ID: 19301327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of column connection on band broadening in very high pressure liquid chromatography.
    Stankovich JJ; Gritti F; Stevenson PG; Guiochon G
    J Sep Sci; 2013 Sep; 36(17):2709-17. PubMed ID: 23900740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalability of pre-packed preparative chromatography columns with different diameters and lengths taking into account extra column effects.
    Schweiger S; Jungbauer A
    J Chromatogr A; 2018 Feb; 1537():66-74. PubMed ID: 29373126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.