These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 14602046)
1. Analysis of the membrane topology for transmembrane domains 7-12 of the human reduced folate carrier by scanning cysteine accessibility methods. Cao W; Matherly LH Biochem J; 2004 Feb; 378(Pt 1):201-6. PubMed ID: 14602046 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a cysteine-less human reduced folate carrier: localization of a substrate-binding domain by cysteine-scanning mutagenesis and cysteine accessibility methods. Cao W; Matherly LH Biochem J; 2003 Aug; 374(Pt 1):27-36. PubMed ID: 12749765 [TBL] [Abstract][Full Text] [Related]
3. Localization of a substrate binding domain of the human reduced folate carrier to transmembrane domain 11 by radioaffinity labeling and cysteine-substituted accessibility methods. Hou Z; Stapels SE; Haska CL; Matherly LH J Biol Chem; 2005 Oct; 280(43):36206-13. PubMed ID: 16115875 [TBL] [Abstract][Full Text] [Related]
4. Restoration of high-level transport activity by human reduced folate carrier/ThTr1 thiamine transporter chimaeras: role of the transmembrane domain 6/7 linker region in reduced folate carrier function. Liu XY; Witt TL; Matherly LH Biochem J; 2003 Jan; 369(Pt 1):31-7. PubMed ID: 12227830 [TBL] [Abstract][Full Text] [Related]
5. Transmembrane domains 4, 5, 7, 8, and 10 of the human reduced folate carrier are important structural or functional components of the transmembrane channel for folate substrates. Hou Z; Ye J; Haska CL; Matherly LH J Biol Chem; 2006 Nov; 281(44):33588-96. PubMed ID: 16923800 [TBL] [Abstract][Full Text] [Related]
6. Analysis of membrane topology of the human reduced folate carrier protein by hemagglutinin epitope insertion and scanning glycosylation insertion mutagenesis. Liu XY; Matherly LH Biochim Biophys Acta; 2002 Aug; 1564(2):333-42. PubMed ID: 12175915 [TBL] [Abstract][Full Text] [Related]
7. The region between transmembrane domains 1 and 2 of the reduced folate carrier forms part of the substrate-binding pocket. Flintoff WF; Williams FM; Sadlish H J Biol Chem; 2003 Oct; 278(42):40867-76. PubMed ID: 12909642 [TBL] [Abstract][Full Text] [Related]
8. Functional interactions between arginine-133 and aspartate-88 in the human reduced folate carrier: evidence for a charge-pair association. Liu XY; Matherly LH Biochem J; 2001 Sep; 358(Pt 2):511-6. PubMed ID: 11513752 [TBL] [Abstract][Full Text] [Related]
9. Membrane topological analysis of the proton-coupled folate transporter (PCFT-SLC46A1) by the substituted cysteine accessibility method. Zhao R; Unal ES; Shin DS; Goldman ID Biochemistry; 2010 Apr; 49(13):2925-31. PubMed ID: 20225891 [TBL] [Abstract][Full Text] [Related]
10. Substrate-specific binding and conformational changes involving Ser313 and transmembrane domain 8 of the human reduced folate carrier, as determined by site-directed mutagenesis and protein cross-linking. Hou Z; Wu J; Ye J; Cherian C; Matherly LH Biochem J; 2010 Sep; 430(2):265-74. PubMed ID: 20557288 [TBL] [Abstract][Full Text] [Related]
11. A novel topology model of the human Na(+)/H(+) exchanger isoform 1. Wakabayashi S; Pang T; Su X; Shigekawa M J Biol Chem; 2000 Mar; 275(11):7942-9. PubMed ID: 10713111 [TBL] [Abstract][Full Text] [Related]
12. Substituted cysteine accessibility reveals a novel transmembrane 2-3 reentrant loop and functional role for transmembrane domain 2 in the human proton-coupled folate transporter. Wilson MR; Hou Z; Matherly LH J Biol Chem; 2014 Sep; 289(36):25287-95. PubMed ID: 25053408 [TBL] [Abstract][Full Text] [Related]
13. Accessibility and conformational coupling in serotonin transporter predicted internal domains. Androutsellis-Theotokis A; Rudnick G J Neurosci; 2002 Oct; 22(19):8370-8. PubMed ID: 12351711 [TBL] [Abstract][Full Text] [Related]
14. Restoration of transport activity by co-expression of human reduced folate carrier half-molecules in transport-impaired K562 cells: localization of a substrate binding domain to transmembrane domains 7-12. Witt TL; Stapels SE; Matherly LH J Biol Chem; 2004 Nov; 279(45):46755-63. PubMed ID: 15337749 [TBL] [Abstract][Full Text] [Related]
15. Identification of the minimal functional unit of the homo-oligomeric human reduced folate carrier. Hou Z; Cherian C; Drews J; Wu J; Matherly LH J Biol Chem; 2010 Feb; 285(7):4732-40. PubMed ID: 20018840 [TBL] [Abstract][Full Text] [Related]
16. The transport activity of the Na+-Ca2+ exchanger NCX1 expressed in HEK 293 cells is sensitive to covalent modification of intracellular cysteine residues by sulfhydryl reagents. Ren X; Kasir J; Rahamimoff H J Biol Chem; 2001 Mar; 276(12):9572-9. PubMed ID: 11134012 [TBL] [Abstract][Full Text] [Related]
17. Membrane topology of a cysteine-less mutant of human P-glycoprotein. Loo TW; Clarke DM J Biol Chem; 1995 Jan; 270(2):843-8. PubMed ID: 7822320 [TBL] [Abstract][Full Text] [Related]
18. The transmembrane domains of the ABC multidrug transporter LmrA form a cytoplasmic exposed, aqueous chamber within the membrane. Poelarends GJ; Konings WN J Biol Chem; 2002 Nov; 277(45):42891-8. PubMed ID: 12183459 [TBL] [Abstract][Full Text] [Related]
19. Identification of lysine-411 in the human reduced folate carrier as an important determinant of substrate selectivity and carrier function by systematic site-directed mutagenesis. Witt TL; Matherly LH Biochim Biophys Acta; 2002 Dec; 1567(1-2):56-62. PubMed ID: 12488038 [TBL] [Abstract][Full Text] [Related]
20. Oligomeric structure of the human reduced folate carrier: identification of homo-oligomers and dominant-negative effects on carrier expression and function. Hou Z; Matherly LH J Biol Chem; 2009 Jan; 284(5):3285-3293. PubMed ID: 19019821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]