BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 14602814)

  • 1. Neonatal alcohol exposure induces long-lasting impairment of visual cortical plasticity in ferrets.
    Medina AE; Krahe TE; Coppola DM; Ramoa AS
    J Neurosci; 2003 Nov; 23(31):10002-12. PubMed ID: 14602814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early alcohol exposure impairs ocular dominance plasticity throughout the critical period.
    Medina AE; Ramoa AS
    Brain Res Dev Brain Res; 2005 Jun; 157(1):107-11. PubMed ID: 15939092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of serum response factor restores ocular dominance plasticity in a model of fetal alcohol spectrum disorders.
    Paul AP; Pohl-Guimaraes F; Krahe TE; Filgueiras CC; Lantz CL; Colello RJ; Wang W; Medina AE
    J Neurosci; 2010 Feb; 30(7):2513-20. PubMed ID: 20164336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early alcohol exposure induces persistent alteration of cortical columnar organization and reduced orientation selectivity in the visual cortex.
    Medina AE; Krahe TE; Ramoa AS
    J Neurophysiol; 2005 Mar; 93(3):1317-25. PubMed ID: 15483067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of Serum Response Factor in Neurons Restores Ocular Dominance Plasticity in a Model of Fetal Alcohol Spectrum Disorders.
    Foxworthy WA; Medina AE
    Alcohol Clin Exp Res; 2015 Oct; 39(10):1951-6. PubMed ID: 26342644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity.
    Mower AF; Liao DS; Nestler EJ; Neve RL; Ramoa AS
    J Neurosci; 2002 Mar; 22(6):2237-45. PubMed ID: 11896163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early alcohol exposure disrupts visual cortex plasticity in mice.
    Lantz CL; Wang W; Medina AE
    Int J Dev Neurosci; 2012 Aug; 30(5):351-7. PubMed ID: 22617459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity.
    Liao DS; Krahe TE; Prusky GT; Medina AE; Ramoa AS
    J Neurophysiol; 2004 Oct; 92(4):2113-21. PubMed ID: 15102897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental alcohol exposure impairs synaptic plasticity without overtly altering microglial function in mouse visual cortex.
    Wong EL; Lutz NM; Hogan VA; Lamantia CE; McMurray HR; Myers JR; Ashton JM; Majewska AK
    Brain Behav Immun; 2018 Jan; 67():257-278. PubMed ID: 28918081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphodiesterase type 4 inhibition does not restore ocular dominance plasticity in a ferret model of fetal alcohol spectrum disorders.
    Krahe TE; Paul AP; Medina AE
    Alcohol Clin Exp Res; 2010 Mar; 34(3):493-8. PubMed ID: 20028352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke.
    Stodieck SK; Greifzu F; Goetze B; Schmidt KF; Löwel S
    Exp Gerontol; 2014 Dec; 60():1-11. PubMed ID: 25220148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lifelong learning: ocular dominance plasticity in mouse visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Curr Opin Neurobiol; 2006 Aug; 16(4):451-9. PubMed ID: 16837188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid ocular dominance plasticity requires cortical but not geniculate protein synthesis.
    Taha S; Stryker MP
    Neuron; 2002 Apr; 34(3):425-36. PubMed ID: 11988173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein synthesis-independent plasticity mediates rapid and precise recovery of deprived eye responses.
    Krahe TE; Medina AE; de Bittencourt-Navarrete RE; Colello RJ; Ramoa AS
    Neuron; 2005 Oct; 48(2):329-43. PubMed ID: 16242412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinctive features of adult ocular dominance plasticity.
    Sato M; Stryker MP
    J Neurosci; 2008 Oct; 28(41):10278-86. PubMed ID: 18842887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The critical period for ocular dominance plasticity in the Ferret's visual cortex.
    Issa NP; Trachtenberg JT; Chapman B; Zahs KR; Stryker MP
    J Neurosci; 1999 Aug; 19(16):6965-78. PubMed ID: 10436053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus for rapid ocular dominance plasticity in visual cortex.
    Rittenhouse CD; Siegler BA; Voelker CC; Shouval HZ; Paradiso MA; Bear MF
    J Neurophysiol; 2006 May; 95(5):2947-50. PubMed ID: 16481452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses.
    Roberts EB; Meredith MA; Ramoa AS
    J Neurophysiol; 1998 Sep; 80(3):1021-32. PubMed ID: 9744918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.