These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 14602829)

  • 1. Single-unit activity patterns in nuclei that control the electromotor command nucleus during spontaneous electric signal production in the mormyrid Brienomyrus brachyistius.
    Carlson BA
    J Neurosci; 2003 Nov; 23(31):10128-36. PubMed ID: 14602829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central control of electric signaling behavior in the mormyrid Brienomyrus brachyistius: segregation of behavior-specific inputs and the role of modifiable recurrent inhibition.
    Carlson BA; Hopkins CD
    J Exp Biol; 2004 Mar; 207(Pt 7):1073-84. PubMed ID: 14978050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The midbrain precommand nucleus of the mormyrid electromotor network.
    von der Emde G; Sena LG; Niso R; Grant K
    J Neurosci; 2000 Jul; 20(14):5483-95. PubMed ID: 10884332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroanatomy of the mormyrid electromotor control system.
    Carlson BA
    J Comp Neurol; 2002 Dec; 454(4):440-55. PubMed ID: 12455008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish.
    Carlson BA
    J Physiol Paris; 2002; 96(5-6):405-19. PubMed ID: 14692489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotid fish.
    Curti S; Falconi A; Morales FR; Borde M
    J Neurosci; 1999 Oct; 19(20):9133-40. PubMed ID: 10516331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interruption of pacemaker signals by a diencephalic nucleus in the African electric fish, Gymnarchus niloticus.
    Zhang Y; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 May; 192(5):509-21. PubMed ID: 16450119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish.
    Fukutomi M; Carlson BA
    J Neurosci; 2020 Aug; 40(33):6345-6356. PubMed ID: 32661026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural command of electromotor output in mormyrids.
    Grant K; von der Emde G ; Sena LG; Mohr C
    J Exp Biol; 1999 May; 202(# (Pt 10)):1399-407. PubMed ID: 10210680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus.
    Keller CH; Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1991 Oct; 169(4):441-50. PubMed ID: 1685751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.
    Baker CA; Ma L; Casareale CR; Carlson BA
    J Neurosci; 2016 Aug; 36(34):8985-9000. PubMed ID: 27559179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mormyrid brainstem--II. The medullary electromotor relay nucleus: an ultrastructural horseradish peroxidase study.
    Elekes K; Ravaille M; Bell CC; Libouban S; Szabo T
    Neuroscience; 1985 Jun; 15(2):417-29. PubMed ID: 4022332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish.
    Bell CC; Grant K
    J Neurosci; 1989 Mar; 9(3):1029-44. PubMed ID: 2926477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The African wave-type electric fish, Gymnarchus niloticus, lacks corollary discharge mechanisms for electrosensory gating.
    Kawasaki M
    J Comp Physiol A; 1994 Feb; 174(2):133-44. PubMed ID: 8145186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional organization of a diencephalic sensory-motor interface in the gymnotiform fish, Eigenmannia.
    Keller CH; Maler L; Heiligenberg W
    J Comp Neurol; 1990 Mar; 293(3):347-76. PubMed ID: 1691214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential activation of glutamate receptor subtypes on a single class of cells enables a neural oscillator to produce distinct behaviors.
    Spiro JE
    J Neurophysiol; 1997 Aug; 78(2):835-47. PubMed ID: 9307117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish.
    Bell CC; Libouban S; Szabo T
    J Comp Neurol; 1983 May; 216(3):327-38. PubMed ID: 6306068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of electric organ discharge activity in the weakly electric fish Brienomyrus niger L. (Mormyridae).
    Serrier J; Moller P
    Exp Biol; 1989; 48(5):235-44. PubMed ID: 2620705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology and physiology of the brainstem nuclei controlling the electric organ discharge in mormyrid fish.
    Grant K; Bell CC; Clausse S; Ravaille M
    J Comp Neurol; 1986 Mar; 245(4):514-30. PubMed ID: 3700711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication in the weakly electric fish Sternopygus macrurus. II. Behavioral test of conspecific EOD detection ability.
    Fleishman LJ; Zakon HH; Lemon WC
    J Comp Physiol A; 1992 Mar; 170(3):349-56. PubMed ID: 1593504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.