These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 14602917)

  • 41. RNA tectonics: towards RNA design.
    Westhof E; Masquida B; Jaeger L
    Fold Des; 1996; 1(4):R78-88. PubMed ID: 9079386
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A nomenclature for all signal recognition particle RNAs.
    Zwieb C; van Nues RW; Rosenblad MA; Brown JD; Samuelsson T
    RNA; 2005 Jan; 11(1):7-13. PubMed ID: 15611297
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNA secondary structure prediction using stochastic context-free grammars and evolutionary history.
    Knudsen B; Hein J
    Bioinformatics; 1999 Jun; 15(6):446-54. PubMed ID: 10383470
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure of stem-loop IV of Tetrahymena telomerase RNA.
    Chen Y; Fender J; Legassie JD; Jarstfer MB; Bryan TM; Varani G
    EMBO J; 2006 Jul; 25(13):3156-66. PubMed ID: 16778765
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding.
    Baird NJ; Westhof E; Qin H; Pan T; Sosnick TR
    J Mol Biol; 2005 Sep; 352(3):712-22. PubMed ID: 16115647
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A structure-based flexible search method for motifs in RNA.
    Veksler-Lublinsky I; Ziv-Ukelson M; Barash D; Kedem K
    J Comput Biol; 2007 Sep; 14(7):908-26. PubMed ID: 17803370
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RNA-TVcurve: a Web server for RNA secondary structure comparison based on a multi-scale similarity of its triple vector curve representation.
    Li Y; Shi X; Liang Y; Xie J; Zhang Y; Ma Q
    BMC Bioinformatics; 2017 Jan; 18(1):51. PubMed ID: 28109252
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermodynamic matchers for the construction of the cuckoo RNA family.
    Reinkensmeier J; Giegerich R
    RNA Biol; 2015; 12(2):197-207. PubMed ID: 25779873
    [TBL] [Abstract][Full Text] [Related]  

  • 49. corRna: a web server for predicting multiple-point deleterious mutations in structural RNAs.
    Lam E; Kam A; WaldispĆ¼hl J
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W160-6. PubMed ID: 21596778
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic control by metabolite-binding riboswitches.
    Winkler WC; Breaker RR
    Chembiochem; 2003 Oct; 4(10):1024-32. PubMed ID: 14523920
    [No Abstract]   [Full Text] [Related]  

  • 51. Energy minimization methods applied to riboswitches: a perspective and challenges.
    Barash D; Gabdank I
    RNA Biol; 2010; 7(1):90-7. PubMed ID: 20061789
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural prediction of RNA switches using conditional base-pair probabilities.
    Manzourolajdad A; Spouge JL
    PLoS One; 2019; 14(6):e0217625. PubMed ID: 31188853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of crystal structure interactions and thermodynamics for stabilizing mutations in the Tetrahymena ribozyme.
    Guo F; Gooding AR; Cech TR
    RNA; 2006 Mar; 12(3):387-95. PubMed ID: 16431981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exposing the kinetic traps in RNA folding.
    Treiber DK; Williamson JR
    Curr Opin Struct Biol; 1999 Jun; 9(3):339-45. PubMed ID: 10361090
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rchange: algorithms for computing energy changes of RNA secondary structures in response to base mutations.
    Kiryu H; Asai K
    Bioinformatics; 2012 Apr; 28(8):1093-101. PubMed ID: 22373787
    [TBL] [Abstract][Full Text] [Related]  

  • 56. "Well-determined" regions in RNA secondary structure prediction: analysis of small subunit ribosomal RNA.
    Zuker M; Jacobson AB
    Nucleic Acids Res; 1995 Jul; 23(14):2791-8. PubMed ID: 7544463
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of common folding structures of homologous RNAs.
    Han K; Kim HJ
    Nucleic Acids Res; 1993 Mar; 21(5):1251-7. PubMed ID: 7681944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of common secondary structures of RNAs: a genetic algorithm approach.
    Chen JH; Le SY; Maizel JV
    Nucleic Acids Res; 2000 Feb; 28(4):991-9. PubMed ID: 10648793
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PSRna: Prediction of small RNA secondary structures based on reverse complementary folding method.
    Li J; Xu C; Wang L; Liang H; Feng W; Cai Z; Wang Y; Cong W; Liu Y
    J Bioinform Comput Biol; 2016 Aug; 14(4):1643001. PubMed ID: 27045556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA-RNA interaction prediction and antisense RNA target search.
    Alkan C; KarakoƧ E; Nadeau JH; Sahinalp SC; Zhang K
    J Comput Biol; 2006 Mar; 13(2):267-82. PubMed ID: 16597239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.