These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 14602920)
1. Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Galán B; Kolb A; Sanz JM; García JL; Prieto MA Nucleic Acids Res; 2003 Nov; 31(22):6598-609. PubMed ID: 14602920 [TBL] [Abstract][Full Text] [Related]
2. The role of FIS protein in the physiological control of the expression of the Escherichia coli meta-hpa operon. Galán B; Manso I; Kolb A; García JL; Prieto MA Microbiology (Reading); 2008 Jul; 154(Pt 7):2151-2160. PubMed ID: 18599842 [TBL] [Abstract][Full Text] [Related]
3. The TetR Family Repressor HpaR Negatively Regulates the Catabolism of 5-Hydroxypicolinic Acid in Alcaligenes faecalis JQ135 by Binding to Two Unique DNA Sequences in the Promoter of Xu S; Jiang Y; Zhang F; Wang X; Zhang K; Zhao L; Hong Q; Qiu J; He J Appl Environ Microbiol; 2022 Mar; 88(6):e0239021. PubMed ID: 35138929 [TBL] [Abstract][Full Text] [Related]
4. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing. Xu Y; Sun Y; Huysveld N; Gigot D; Glansdorff N; Charlier D J Mol Biol; 2003 Feb; 326(2):353-69. PubMed ID: 12559906 [TBL] [Abstract][Full Text] [Related]
5. MarR-Family Transcription Factor HpaR Controls Expression of the vgrR-vgrS Operon of Xanthomonas campestris pv. campestris. Pan Y; Liang F; Li RJ; Qian W Mol Plant Microbe Interact; 2018 Mar; 31(3):299-310. PubMed ID: 29077520 [TBL] [Abstract][Full Text] [Related]
6. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. Prieto MA; Díaz E; García JL J Bacteriol; 1996 Jan; 178(1):111-20. PubMed ID: 8550403 [TBL] [Abstract][Full Text] [Related]
7. Superimposed levels of regulation of the 4-hydroxyphenylacetate catabolic pathway in Escherichia coli. Galàn B; Kolb A; Garciá JL; Prieto MA J Biol Chem; 2001 Oct; 276(40):37060-8. PubMed ID: 11477101 [TBL] [Abstract][Full Text] [Related]
8. The PaaX repressor, a link between penicillin G acylase and the phenylacetyl-coenzyme A catabolon of Escherichia coli W. Galán B; García JL; Prieto MA J Bacteriol; 2004 Apr; 186(7):2215-20. PubMed ID: 15028709 [TBL] [Abstract][Full Text] [Related]
9. Regulation of nrf operon expression in pathogenic enteric bacteria: sequence divergence reveals new regulatory complexity. Godfrey RE; Lee DJ; Busby SJW; Browning DF Mol Microbiol; 2017 May; 104(4):580-594. PubMed ID: 28211111 [TBL] [Abstract][Full Text] [Related]
10. Characterisation of the molybdenum-responsive ModE regulatory protein and its binding to the promoter region of the modABCD (molybdenum transport) operon of Escherichia coli. Anderson LA; Palmer T; Price NC; Bornemann S; Boxer DH; Pau RN Eur J Biochem; 1997 May; 246(1):119-26. PubMed ID: 9210473 [TBL] [Abstract][Full Text] [Related]
11. Purine and pyrimidine-specific repression of the Escherichia coli carAB operon are functionally and structurally coupled. Devroede N; Thia-Toong TL; Gigot D; Maes D; Charlier D J Mol Biol; 2004 Feb; 336(1):25-42. PubMed ID: 14741201 [TBL] [Abstract][Full Text] [Related]
12. Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis. Mota LJ; Tavares P; Sá-Nogueira I Mol Microbiol; 1999 Aug; 33(3):476-89. PubMed ID: 10417639 [TBL] [Abstract][Full Text] [Related]
13. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279 [TBL] [Abstract][Full Text] [Related]
14. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). Plumbridge J J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067 [TBL] [Abstract][Full Text] [Related]
15. BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. Barragán MJ; Blázquez B; Zamarro MT; Mancheño JM; García JL; Díaz E; Carmona M J Biol Chem; 2005 Mar; 280(11):10683-94. PubMed ID: 15634675 [TBL] [Abstract][Full Text] [Related]
16. Hyperthermophilic Thermotoga arginine repressor binding to full-length cognate and heterologous arginine operators and to half-site targets. Morin A; Huysveld N; Braun F; Dimova D; Sakanyan V; Charlier D J Mol Biol; 2003 Sep; 332(3):537-53. PubMed ID: 12963366 [TBL] [Abstract][Full Text] [Related]
17. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions. Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010 [TBL] [Abstract][Full Text] [Related]
18. Transcription initiation in the Escherichia coli K-12 malI-malX intergenic region and the role of the cyclic AMP receptor protein. Lloyd GS; Hollands K; Godfrey RE; Busby SJ FEMS Microbiol Lett; 2008 Nov; 288(2):250-7. PubMed ID: 19054084 [TBL] [Abstract][Full Text] [Related]
19. Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp, and ArgR. Paul L; Mishra PK; Blumenthal RM; Matthews RG BMC Microbiol; 2007 Jan; 7():2. PubMed ID: 17233899 [TBL] [Abstract][Full Text] [Related]
20. MarR-like transcriptional regulator involved in detoxification of aromatic compounds in Sulfolobus solfataricus. Fiorentino G; Ronca R; Cannio R; Rossi M; Bartolucci S J Bacteriol; 2007 Oct; 189(20):7351-60. PubMed ID: 17675388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]