BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 14602920)

  • 21. Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli.
    Kalivoda KA; Steenbergen SM; Vimr ER; Plumbridge J
    J Bacteriol; 2003 Aug; 185(16):4806-15. PubMed ID: 12897000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Escherichia coli metallo-regulator RcnR represses rcnA and rcnR transcription through binding on a shared operator site: Insights into regulatory specificity towards nickel and cobalt.
    Blaha D; Arous S; Blériot C; Dorel C; Mandrand-Berthelot MA; Rodrigue A
    Biochimie; 2011 Mar; 93(3):434-9. PubMed ID: 21040754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of MobR, the 3-hydroxybenzoate-responsive transcriptional regulator for the 3-hydroxybenzoate hydroxylase gene of Comamonas testosteroni KH122-3s.
    Hiromoto T; Matsue H; Yoshida M; Tanaka T; Higashibata H; Hosokawa K; Yamaguchi H; Fujiwara S
    J Mol Biol; 2006 Dec; 364(5):863-77. PubMed ID: 17046018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction at a distance between multiple operators controls the adjacent, divergently transcribed glpTQ-glpACB operons of Escherichia coli K-12.
    Larson TJ; Cantwell JS; van Loo-Bhattacharya AT
    J Biol Chem; 1992 Mar; 267(9):6114-21. PubMed ID: 1556120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HucR, a novel uric acid-responsive member of the MarR family of transcriptional regulators from Deinococcus radiodurans.
    Wilkinson SP; Grove A
    J Biol Chem; 2004 Dec; 279(49):51442-50. PubMed ID: 15448166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions between RNA polymerase and the positive and negative regulators of transcription at the Escherichia coli gal operon.
    Dalma-Weiszhausz DD; Brenowitz M
    Biochemistry; 1996 Mar; 35(12):3735-45. PubMed ID: 8619994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Definition of a consensus DNA-binding site for the Escherichia coli pleiotropic regulatory protein, FruR.
    Nègre D; Bonod-Bidaud C; Geourjon C; Deléage G; Cozzone AJ; Cortay JC
    Mol Microbiol; 1996 Jul; 21(2):257-66. PubMed ID: 8858581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A role for the interdomain linker region of the Escherichia coli CytR regulator in repression complex formation.
    Kallipolitis BH; Valentin-Hansen P
    J Mol Biol; 2004 Sep; 342(1):1-7. PubMed ID: 15313602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB.
    Overgaard M; Borch J; Gerdes K
    J Mol Biol; 2009 Nov; 394(2):183-96. PubMed ID: 19747491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain.
    Zeng G; Ye S; Larson TJ
    J Bacteriol; 1996 Dec; 178(24):7080-9. PubMed ID: 8955387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of the DNA binding sites of PerA, the transcriptional activator of the bfp and per operons in enteropathogenic Escherichia coli.
    Ibarra JA; Villalba MI; Puente JL
    J Bacteriol; 2003 May; 185(9):2835-47. PubMed ID: 12700263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The arginine operon of Bacillus stearothermophilus: characterization of the control region and its interaction with the heterologous B. subtilis arginine repressor.
    Savchenko A; Charlier D; Dion M; Weigel P; Hallet JN; Holtham C; Baumberg S; Glansdorff N; Sakanyan V
    Mol Gen Genet; 1996 Aug; 252(1-2):69-78. PubMed ID: 8804405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli.
    Izu H; Adachi O; Yamada M
    J Mol Biol; 1997 Apr; 267(4):778-93. PubMed ID: 9135111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli.
    Ferrández A; García JL; Díaz E
    J Biol Chem; 2000 Apr; 275(16):12214-22. PubMed ID: 10766858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds.
    Sulavik MC; Gambino LF; Miller PF
    Mol Med; 1995 May; 1(4):436-46. PubMed ID: 8521301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and functional analyses of the repressor, RbsR, of the ribose operon of Escherichia coli.
    Mauzy CA; Hermodson MA
    Protein Sci; 1992 Jul; 1(7):831-42. PubMed ID: 1304369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights on the regulation of the phenylacetate degradation pathway from Escherichia coli.
    Fernández C; Díaz E; García JL
    Environ Microbiol Rep; 2014 Jun; 6(3):239-50. PubMed ID: 24983528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The MarR-Type Regulator Rdh2R Regulates rdh Gene Transcription in Dehalococcoides mccartyi Strain CBDB1.
    Krasper L; Lilie H; Kublik A; Adrian L; Golbik R; Lechner U
    J Bacteriol; 2016 Dec; 198(23):3130-3141. PubMed ID: 27621279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The redox-regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator.
    Hidalgo E; Leautaud V; Demple B
    EMBO J; 1998 May; 17(9):2629-36. PubMed ID: 9564045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity.
    Overgaard M; Borch J; Jørgensen MG; Gerdes K
    Mol Microbiol; 2008 Aug; 69(4):841-57. PubMed ID: 18532983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.