These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 14604708)

  • 1. Ocular higher-order aberrations in individuals screened for refractive surgery.
    Wang L; Koch DD
    J Cataract Refract Surg; 2003 Oct; 29(10):1896-903. PubMed ID: 14604708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical aberrations of the human anterior cornea.
    Wang L; Dai E; Koch DD; Nathoo A
    J Cataract Refract Surg; 2003 Aug; 29(8):1514-21. PubMed ID: 12954298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher-order aberrations from the internal optics of the eye.
    Wang L; Santaella RM; Booth M; Koch DD
    J Cataract Refract Surg; 2005 Aug; 31(8):1512-9. PubMed ID: 16129285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of higher-order wavefront aberrations with 3 aberrometers.
    Liang CL; Juo SH; Chang CJ
    J Cataract Refract Surg; 2005 Nov; 31(11):2153-6. PubMed ID: 16412931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal-eye Zernike coefficients and root-mean-square wavefront errors.
    Salmon TO; van de Pol C
    J Cataract Refract Surg; 2006 Dec; 32(12):2064-74. PubMed ID: 17137985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocular higher-order aberrations in eyes with supernormal vision.
    Levy Y; Segal O; Avni I; Zadok D
    Am J Ophthalmol; 2005 Feb; 139(2):225-8. PubMed ID: 15733980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocular aberrations measured by the Fourier-based WaveScan and Zernike-based LADARWave Hartmann-Shack aberrometers.
    Knapp S; Awwad ST; Ghali C; McCulley JP
    J Refract Surg; 2009 Feb; 25(2):201-9. PubMed ID: 19241771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocular higher-order aberrations in myopia and skiascopic wavefront repeatability.
    Zadok D; Levy Y; Segal O; Barkana Y; Morad Y; Avni I
    J Cataract Refract Surg; 2005 Jun; 31(6):1128-32. PubMed ID: 16039485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Custom optimization of intraocular lens asphericity.
    Wang L; Koch DD
    J Cataract Refract Surg; 2007 Oct; 33(10):1713-20. PubMed ID: 17889765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of wavefront aberrations in rabbit and human eyes.
    Chen L; Huang LC; Gray B; Chernyak DA
    Clin Exp Optom; 2014 Nov; 97(6):534-9. PubMed ID: 25069625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher-order aberrations in eyes with irregular corneas after laser refractive surgery.
    McCormick GJ; Porter J; Cox IG; MacRae S
    Ophthalmology; 2005 Oct; 112(10):1699-709. PubMed ID: 16095700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Distribution and enantiomorphism of higher-order ocular optical aberrations].
    Gatinel D; Delair E; Abi-Farah H; Hoang-Xuan T
    J Fr Ophtalmol; 2005 Dec; 28(10):1041-50. PubMed ID: 16395195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the VISX wavescan and NIDEK OPD-scan aberrometers.
    Kim DS; Narváez J; Krassin J; Bahjri K
    J Refract Surg; 2009 May; 25(5):429-34. PubMed ID: 19507795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of higher-order aberrations between eyes with natural supervision and highly myopic eyes in Koreans.
    Kim M; Lee YG; Seo KR; Kim EK; Lee HK
    Korean J Ophthalmol; 2007 Jun; 21(2):79-84. PubMed ID: 17592237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in corneal and ocular higher-order wavefront aberrations.
    Amano S; Amano Y; Yamagami S; Miyai T; Miyata K; Samejima T; Oshika T
    Am J Ophthalmol; 2004 Jun; 137(6):988-92. PubMed ID: 15183781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeatability of a Combined Adaptive Optics Visual Simulator and Hartman-Shack Aberrometer in Pseudophakic Eyes With and Without Previous Corneal Refractive Surgery.
    McBee D; Kozhaya K; Wang L; Weikert MP; Koch DD
    J Refract Surg; 2024 Sep; 40(9):e645-e653. PubMed ID: 39254243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor.
    Pantanelli S; MacRae S; Jeong TM; Yoon G
    Ophthalmology; 2007 Nov; 114(11):2013-21. PubMed ID: 17553566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of monochromatic aberrations in young adults with different visual acuity and refractive errors.
    Yazar S; Hewitt AW; Forward H; McKnight CM; Tan A; Mountain JA; Mackey DA
    J Cataract Refract Surg; 2014 Mar; 40(3):441-9. PubMed ID: 24417894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of higher order aberrations measured by NIDEK OPD-Scan dynamic skiascopy and Zeiss WASCA Hartmann-Shack aberrometers.
    Cerviño A; Hosking SL; Montés-Micó R
    J Refract Surg; 2008 Oct; 24(8):790-6. PubMed ID: 18856232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of corneal power, astigmatism, and wavefront aberration measurements obtained by a point-source color light-emitting diode-based topographer, a Placido-disk topographer, and a combined Placido and dual Scheimpflug device.
    Ventura BV; Wang L; Ali SF; Koch DD; Weikert MP
    J Cataract Refract Surg; 2015 Aug; 41(8):1658-71. PubMed ID: 26432123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.