These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 14605225)

  • 1. The Cape Verde Islands allele of cryptochrome 2 enhances cotyledon unfolding in the absence of blue light in Arabidopsis.
    Botto JF; Alonso-Blanco C; Garzarón I; Sánchez RA; Casal JJ
    Plant Physiol; 2003 Dec; 133(4):1547-56. PubMed ID: 14605225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis.
    Casal JJ; Mazzella MA
    Plant Physiol; 1998 Sep; 118(1):19-25. PubMed ID: 9733522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of cryptochrome 2 in flowering in Arabidopsis.
    El-Din El-Assal S; Alonso-Blanco C; Peeters AJ; Wagemaker C; Weller JL; Koornneef M
    Plant Physiol; 2003 Dec; 133(4):1504-16. PubMed ID: 14605222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development.
    Mazzella MA; Cerdán PD; Staneloni RJ; Casal JJ
    Development; 2001 Jun; 128(12):2291-9. PubMed ID: 11493548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis.
    Ahmad M; Grancher N; Heil M; Black RC; Giovani B; Galland P; Lardemer D
    Plant Physiol; 2002 Jun; 129(2):774-85. PubMed ID: 12068118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis.
    Franklin KA; Davis SJ; Stoddart WM; Vierstra RD; Whitelam GC
    Plant Cell; 2003 Sep; 15(9):1981-9. PubMed ID: 12953105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Arabidopsis recombinant inbred lines (Landsberg erecta x Nossen) reveal natural variation in phytochrome-mediated responses.
    Magliano TM; Botto JF; Godoy AV; Symonds VV; Lloyd AM; Casal JJ
    Plant Physiol; 2005 Jun; 138(2):1126-35. PubMed ID: 15908601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2.
    El-Din El-Assal S; Alonso-Blanco C; Peeters AJ; Raz V; Koornneef M
    Nat Genet; 2001 Dec; 29(4):435-40. PubMed ID: 11726930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development.
    Neff MM; Chory J
    Plant Physiol; 1998 Sep; 118(1):27-35. PubMed ID: 9733523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. shl, a New set of Arabidopsis mutants with exaggerated developmental responses to available red, far-red, and blue light.
    Pepper AE; Seong-Kim M; Hebst SM; Ivey KN; Kwak SJ; Broyles DE
    Plant Physiol; 2001 Sep; 127(1):295-304. PubMed ID: 11553757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-action between phytochrome B and HY4 in Arabidopsis thaliana.
    Casal JJ; Boccalandro H
    Planta; 1995; 197(2):213-8. PubMed ID: 8547813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The receptor-like kinase ERECTA contributes to the shade-avoidance syndrome in a background-dependent manner.
    Kasulin L; Agrofoglio Y; Botto JF
    Ann Bot; 2013 May; 111(5):811-9. PubMed ID: 23444123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2.
    Lin C; Yang H; Guo H; Mockler T; Chen J; Cashmore AR
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2686-90. PubMed ID: 9482948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation.
    Shalitin D; Yang H; Mockler TC; Maymon M; Guo H; Whitelam GC; Lin C
    Nature; 2002 Jun; 417(6890):763-7. PubMed ID: 12066190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1.
    Shalitin D; Yu X; Maymon M; Mockler T; Lin C
    Plant Cell; 2003 Oct; 15(10):2421-9. PubMed ID: 14523249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light.
    Folta KM; Pontin MA; Karlin-Neumann G; Bottini R; Spalding EP
    Plant J; 2003 Oct; 36(2):203-14. PubMed ID: 14535885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism.
    Guo H; Duong H; Ma N; Lin C
    Plant J; 1999 Aug; 19(3):279-87. PubMed ID: 10476075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional interaction of phytochrome B and cryptochrome 2.
    Más P; Devlin PF; Panda S; Kay SA
    Nature; 2000 Nov; 408(6809):207-11. PubMed ID: 11089975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability.
    Ahmad M; Jarillo JA; Cashmore AR
    Plant Cell; 1998 Feb; 10(2):197-207. PubMed ID: 9490743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis.
    Ohgishi M; Saji K; Okada K; Sakai T
    Proc Natl Acad Sci U S A; 2004 Feb; 101(8):2223-8. PubMed ID: 14982991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.