These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 14605972)

  • 1. Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system.
    Izambert O; Mitton D; Thourot M; Lavaste F
    Eur Spine J; 2003 Dec; 12(6):562-6. PubMed ID: 14605972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression.
    Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP
    J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biexponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading.
    Solomonow M; He Zhou B; Baratta RV; Lu Y; Zhu M; Harris M
    Clin Biomech (Bristol, Avon); 2000 Mar; 15(3):167-75. PubMed ID: 10656978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study.
    Cheung JT; Zhang M; Chow DH
    Clin Biomech (Bristol, Avon); 2003 Nov; 18(9):790-9. PubMed ID: 14527805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations.
    Kasra M; Shirazi-Adl A; Drouin G
    Spine (Phila Pa 1976); 1992 Jan; 17(1):93-102. PubMed ID: 1536019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics.
    Gooyers CE; McMillan RD; Howarth SJ; Callaghan JP
    Spine (Phila Pa 1976); 2012 Aug; 37(17):E1023-9. PubMed ID: 22472807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ratio of thoracic to lumbar compression force is posture dependent.
    Lee PJ; Lee EL; Hayes WC
    Ergonomics; 2013; 56(5):832-41. PubMed ID: 23510145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of the lumbar intervertebral disk in health, aging, and pathologic conditions.
    Lundon K; Bolton K
    J Orthop Sports Phys Ther; 2001 Jun; 31(6):291-303; discussion 304-6. PubMed ID: 11411624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent.
    Jacobs NT; Cortes DH; Peloquin JM; Vresilovic EJ; Elliott DM
    J Biomech; 2014 Aug; 47(11):2540-6. PubMed ID: 24998992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine.
    Mörl F; Günther M; Riede JM; Hammer M; Schmitt S
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2015-2047. PubMed ID: 32314072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear dynamics of the human lumbar intervertebral disc.
    Marini G; Huber G; Püschel K; Ferguson SJ
    J Biomech; 2015 Feb; 48(3):479-88. PubMed ID: 25573099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in analytical modeling of lumbar disc degeneration.
    Natarajan RN; Williams JR; Andersson GB
    Spine (Phila Pa 1976); 2004 Dec; 29(23):2733-41. PubMed ID: 15564922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression.
    Lu YM; Hutton WC; Gharpuray VM
    J Biomech Eng; 1998 Feb; 120(1):48-54. PubMed ID: 9675680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions.
    Costi JJ; Stokes IA; Gardner-Morse MG; Iatridis JC
    Spine (Phila Pa 1976); 2008 Jul; 33(16):1731-8. PubMed ID: 18628705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure--a finite element study.
    Kuo CS; Hu HT; Lin RM; Huang KY; Lin PC; Zhong ZC; Hseih ML
    BMC Musculoskelet Disord; 2010 Jul; 11():151. PubMed ID: 20602783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs.
    Kemper AR; McNally C; Duma SM
    Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intervertebral disc response to cyclic loading--an animal model.
    Ekström L; Kaigle A; Hult E; Holm S; Rostedt M; Hansson T
    Proc Inst Mech Eng H; 1996; 210(4):249-58. PubMed ID: 9046185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.