These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 14606143)

  • 1. [Use of polypeptide growth factors for the acceleration of vascular prosthesis healing].
    Mikadze ISh; Abzianidze GA; Kalandarishvili LL
    Vestn Khir Im I I Grek; 2003; 162(2):32-6. PubMed ID: 14606143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wound healing by a 3.2 kDa recombinant polypeptide from velvet antler of Cervus nippon Temminck.
    Zha E; Gao S; Pi Y; Li X; Wang Y; Yue X
    Biotechnol Lett; 2012 Apr; 34(4):789-93. PubMed ID: 22198348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local arginine supplementation results in sustained wound nitric oxide production and reductions in vascular endothelial growth factor expression and granulation tissue formation.
    Heffernan D; Dudley B; McNeil PL; Howdieshell TR
    J Surg Res; 2006 Jun; 133(1):46-54. PubMed ID: 16631200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lotka-Volterra equations with chemotaxis: walls, barriers and travelling waves.
    Pettet GJ; McElwain DL; Norbury J
    IMA J Math Appl Med Biol; 2000 Dec; 17(4):395-413. PubMed ID: 11270751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Arterial vascular substitute].
    Sperling M
    Med Klin; 1976 Sep; 71(39):1587-93. PubMed ID: 790126
    [No Abstract]   [Full Text] [Related]  

  • 6. [Application of growth factors in wound healing: fiction or reality?].
    Dutrieux RP; van Ginkel CJ; Westerhof W
    Ned Tijdschr Geneeskd; 1989 Sep; 133(38):1870-2. PubMed ID: 2677794
    [No Abstract]   [Full Text] [Related]  

  • 7. Polypeptide transforming growth factors isolated from bovine sources and used for wound healing in vivo.
    Sporn MB; Roberts AB; Shull JH; Smith JM; Ward JM; Sodek J
    Science; 1983 Mar; 219(4590):1329-31. PubMed ID: 6572416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome.
    Stalmans I
    Verh K Acad Geneeskd Belg; 2005; 67(4):229-76. PubMed ID: 16334858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Formation of the vascular bed: a review of its molecular mechanisms and therapeutic implications].
    Nanka O; Grim M
    Cas Lek Cesk; 2009; 148(4):158-63. PubMed ID: 19514623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preventing thrombus on artifical vascular surfaces: true endothelial cell linings.
    Mansfield PB; Wechezak AR; Sauvage LR
    Trans Am Soc Artif Intern Organs; 1975; 21():264-72. PubMed ID: 1145999
    [No Abstract]   [Full Text] [Related]  

  • 11. [The vascular wall as an efferent regulator of immunogenesis, hemostasis, the kallikrein-kinin system and regenerative processes].
    Kuznik BI; Morozov VG; Khavinson VKh; Stepanova TN; Tsybikov NN
    Fiziol Zh SSSR Im I M Sechenova; 1987 Apr; 73(4):499-505. PubMed ID: 3301421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical experience with crude preparations of growth factors in healing of chronic wounds in human subjects.
    Carter DM; Balin AK; Gottlieb AB; Eisinger M; Lin A; Pratt L; Sherbany A; Caldwell D
    Prog Clin Biol Res; 1988; 266():303-17. PubMed ID: 3380851
    [No Abstract]   [Full Text] [Related]  

  • 13. Induced growth of connective tissue in cardiovascular prosthesis.
    Volder JG; Kolff WJ
    Trans Am Soc Artif Intern Organs; 1974; 20 B():521-6. PubMed ID: 4450304
    [No Abstract]   [Full Text] [Related]  

  • 14. [Study of internal surface of vascular prostheses and their interaction with blood under experimental conditions (electron-microscopic observations)].
    Krymskiĭ LD; Nestaĭko GV; Shekhter AB; Dronov AF; Semenova NA
    Eksp Khir Anesteziol; 1975; (4):26-31. PubMed ID: 1212969
    [No Abstract]   [Full Text] [Related]  

  • 15. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF.
    Nillesen ST; Geutjes PJ; Wismans R; Schalkwijk J; Daamen WF; van Kuppevelt TH
    Biomaterials; 2007 Feb; 28(6):1123-31. PubMed ID: 17113636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacologic enhancement of wound healing.
    Pierce GF; Mustoe TA
    Annu Rev Med; 1995; 46():467-81. PubMed ID: 7598479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiogenic mechanisms of endothelialization of cardiovascular implants: a review of recent investigative strategies.
    Tassiopoulos AK; Greisler HP
    J Biomater Sci Polym Ed; 2000; 11(11):1275-84. PubMed ID: 11263813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular and clinical impact of hepatocyte growth factor, its receptor, activators, and inhibitors in wound healing.
    Conway K; Price P; Harding KG; Jiang WG
    Wound Repair Regen; 2006; 14(1):2-10. PubMed ID: 16476066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular healing after stenting: the role of 17-beta-estradiol in improving re-endothelialization and reducing restenosis.
    Tanguay JF
    Can J Cardiol; 2005 Oct; 21(12):1025-30. PubMed ID: 16234884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastin-derived peptides enhance angiogenesis by promoting endothelial cell migration and tubulogenesis through upregulation of MT1-MMP.
    Robinet A; Fahem A; Cauchard JH; Huet E; Vincent L; Lorimier S; Antonicelli F; Soria C; Crepin M; Hornebeck W; Bellon G
    J Cell Sci; 2005 Jan; 118(Pt 2):343-56. PubMed ID: 15632106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.