These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 14606269)

  • 21. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computerized visual feedback: an adjunct to robotic-assisted gait training.
    Banz R; Bolliger M; Colombo G; Dietz V; Lünenburger L
    Phys Ther; 2008 Oct; 88(10):1135-45. PubMed ID: 18772279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke.
    Li L; Ding L; Chen N; Mao Y; Huang D; Li L
    Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A robotic device for studying rodent locomotion after spinal cord injury.
    Nessler JA; Timoszyk W; Merlo M; Emken JL; Minakata K; Roy RR; de Leon RD; Edgerton VR; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):497-506. PubMed ID: 16425832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD.
    Aurich-Schuler T; Grob F; van Hedel HJA; Labruyère R
    J Neuroeng Rehabil; 2017 Jul; 14(1):76. PubMed ID: 28705170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training.
    Hussein S; Schmidt H; Volkmar M; Werner C; Helmich I; Piorko F; Krüger J; Hesse S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1961-4. PubMed ID: 19163075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy.
    Susko T; Swaminathan K; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1089-1099. PubMed ID: 26929056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined robotic-aided gait training and physical therapy improve functional abilities and hip kinematics during gait in children and adolescents with acquired brain injury.
    Beretta E; Romei M; Molteni E; Avantaggiato P; Strazzer S
    Brain Inj; 2015; 29(7-8):955-62. PubMed ID: 25915458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
    Sale P; Franceschini M; Waldner A; Hesse S
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.
    Tomelleri C; Waldner A; Werner C; Hesse S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975492. PubMed ID: 22275689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial.
    Schwartz I; Sajin A; Fisher I; Neeb M; Shochina M; Katz-Leurer M; Meiner Z
    PM R; 2009 Jun; 1(6):516-23. PubMed ID: 19627940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A wearable resistive robot facilitates locomotor adaptations during gait.
    Washabaugh EP; Krishnan C
    Restor Neurol Neurosci; 2018; 36(2):215-223. PubMed ID: 29526856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Locomotor training through a novel robotic platform for gait rehabilitation in pediatric population: short report.
    Bayón C; Lerma S; Ramírez O; Serrano JI; Del Castillo MD; Raya R; Belda-Lois JM; Martínez I; Rocon E
    J Neuroeng Rehabil; 2016 Nov; 13(1):98. PubMed ID: 27842562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and evaluation of a prototype gait orthosis for early rehabilitation of walking.
    Fang J; Vuckovic A; Galen S; Cossar C; Conway BA; Hunt KJ
    Technol Health Care; 2014 Jan; 22(2):273-88. PubMed ID: 24898868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of biomechanical data to determine the degree of users participation during robotic-assisted gait rehabilitation.
    Collantes I; Asin G; Moreno JC; Pons JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4855-8. PubMed ID: 23367015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.
    Knaepen K; Beyl P; Duerinck S; Hagman F; Lefeber D; Meeusen R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1128-37. PubMed ID: 24846650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soft artificial tactile sensors for the measurement of human-robot interaction in the rehabilitation of the lower limb.
    De Rossi SM; Vitiello N; Lenzi T; Ronsse R; Koopman B; Persichetti A; Giovacchini F; Vecchi F; Ijspeert AJ; van der Kooij H; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1279-82. PubMed ID: 21095918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial.
    Bergmann J; Krewer C; Bauer P; Koenig A; Riener R; Müller F
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):397-407. PubMed ID: 29265791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control architecture for human-robot integration: application to a robotic wheelchair.
    Galindo C; Gonzalez J; Fernández-Madrigal JA
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1053-67. PubMed ID: 17036812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.