These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 14606891)

  • 21. Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels.
    Kang GD; Cheon SH; Song SC
    Int J Pharm; 2006 Aug; 319(1-2):29-36. PubMed ID: 16677786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of cyclic acetal based degradable hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular engineering of silk-elastinlike polymers for matrix-mediated gene delivery: biosynthesis and characterization.
    Haider M; Leung V; Ferrari F; Crissman J; Powell J; Cappello J; Ghandehari H
    Mol Pharm; 2005; 2(2):139-50. PubMed ID: 15804188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of side group modification in polyphosphazenes on hydrolysis and cell adhesion of blends with PLGA.
    Krogman NR; Weikel AL; Kristhart KA; Nukavarapu SP; Deng M; Nair LS; Laurencin CT; Allcock HR
    Biomaterials; 2009 Jun; 30(17):3035-41. PubMed ID: 19345410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual cross-linking systems of functionally photo-cross-linkable and thermoresponsive polyphosphazene hydrogels for biomedical applications.
    Potta T; Chun C; Song SC
    Biomacromolecules; 2010 Jul; 11(7):1741-53. PubMed ID: 20536118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design, synthesis, and preliminary characterization of tyrosine-containing polyarylates: new biomaterials for medical applications.
    Fiordeliso J; Bron S; Kohn J
    J Biomater Sci Polym Ed; 1994; 5(6):497-510. PubMed ID: 8086380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH-sensitive hydrogel based on a novel photocross-linkable copolymer.
    Mandracchia D; Pitarresi G; Palumbo FS; Carlisi B; Giammona G
    Biomacromolecules; 2004; 5(5):1973-82. PubMed ID: 15360313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pH-controlled, polymer-mediated assembly of polymer micelle nanoparticles.
    Lee SC; Lee HJ
    Langmuir; 2007 Jan; 23(2):488-95. PubMed ID: 17209598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vinyl polymers based on L-histidine residues. Part 1. The thermodynamics of poly(ampholyte)s in the free and in the cross-linked gel form.
    Casolaro M; Bottari S; Cappelli A; Mendichi R; Ito Y
    Biomacromolecules; 2004; 5(4):1325-32. PubMed ID: 15244447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical gelation of chitosan in the presence of beta-glycerophosphate: the effect of temperature.
    Cho J; Heuzey MC; Bégin A; Carreau PJ
    Biomacromolecules; 2005; 6(6):3267-75. PubMed ID: 16283755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility.
    Vermonden T; Fedorovich NE; van Geemen D; Alblas J; van Nostrum CF; Dhert WJ; Hennink WE
    Biomacromolecules; 2008 Mar; 9(3):919-26. PubMed ID: 18288801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of acrylic type hydrogels containing azo derivatives of 5-amino salicylic acid for colon-specific drug delivery.
    Mahkam M; Doostie L; Siadat SO
    Inflammopharmacology; 2006 Mar; 14(1-2):72-5. PubMed ID: 16835716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels.
    Chivukula P; Dusek K; Wang D; Dusková-Smrcková M; Kopecková P; Kopecek J
    Biomaterials; 2006 Mar; 27(7):1140-51. PubMed ID: 16098577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Report on the use of poly(organophosphazenes) for the design of stimuli-responsive vesicles.
    Couffin-Hoarau AC; Leroux JC
    Biomacromolecules; 2004; 5(6):2082-7. PubMed ID: 15530020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New hydrolyzable pH-responsive cationic polymers for gene delivery: a preliminary study.
    Veron L; Ganée A; Charreyre MT; Pichot C; Delair T
    Macromol Biosci; 2004 Apr; 4(4):431-44. PubMed ID: 15468235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical and biological properties of collagen-phospholipid polymer hybrid gels.
    Nam K; Kimura T; Kishida A
    Biomaterials; 2007 Jul; 28(20):3153-62. PubMed ID: 17391753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tyrosine-derived polycarbonates: backbone-modified "pseudo"-poly (amino acids) designed for biomedical applications.
    Pulapura S; Kohn J
    Biopolymers; 1992 Apr; 32(4):411-7. PubMed ID: 1623136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of polyphosphazenes for skeletal tissue regeneration.
    Laurencin CT; Norman ME; Elgendy HM; el-Amin SF; Allcock HR; Pucher SR; Ambrosio AA
    J Biomed Mater Res; 1993 Jul; 27(7):963-73. PubMed ID: 8360223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.