These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 14606899)
1. In vitro assessment of the enzymatic degradation of several starch based biomaterials. Azevedo HS; Gama FM; Reis RL Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899 [TBL] [Abstract][Full Text] [Related]
2. Changes on surface morphology of corn starch blend films. Araújo MA; Cunha AM; Mota M J Biomed Mater Res A; 2010 Sep; 94(3):720-9. PubMed ID: 20225217 [TBL] [Abstract][Full Text] [Related]
3. Encapsulation of alpha-amylase into starch-based biomaterials: an enzymatic approach to tailor their degradation rate. Azevedo HS; Reis RL Acta Biomater; 2009 Oct; 5(8):3021-30. PubMed ID: 19427418 [TBL] [Abstract][Full Text] [Related]
4. Microhardness of starch based biomaterials in simulated physiological conditions. Alves NM; Saiz-Arroyo C; Rodriguez-Perez MA; Reis RL; Mano JF Acta Biomater; 2007 Jan; 3(1):69-76. PubMed ID: 16996331 [TBL] [Abstract][Full Text] [Related]
5. In vitro degradation of biodegradable blending materials based on poly(p-dioxanone) and poly(vinyl alcohol)-graft-poly(p-dioxanone) with high molecular weights. Chen SC; Wang XL; Wang YZ; Yang KK; Zhou ZX; Wu G J Biomed Mater Res A; 2007 Feb; 80(2):453-65. PubMed ID: 17013860 [TBL] [Abstract][Full Text] [Related]
6. Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches. Lopez-Rubio A; Flanagan BM; Shrestha AK; Gidley MJ; Gilbert EP Biomacromolecules; 2008 Jul; 9(7):1951-8. PubMed ID: 18529077 [TBL] [Abstract][Full Text] [Related]
8. Enzymatic degradation of starch thermoplastic blends using samples of different thickness. Araújo MA; Cunha AM; Mota M J Mater Sci Mater Med; 2009 Feb; 20(2):607-14. PubMed ID: 18853238 [TBL] [Abstract][Full Text] [Related]
9. Enzymatic hydrolysis of chestnut purée: process optimization using mixtures of alpha-amylase and glucoamylase. López C; Torrado A; Fuciños P; Guerra NP; Pastrana L J Agric Food Chem; 2004 May; 52(10):2907-14. PubMed ID: 15137834 [TBL] [Abstract][Full Text] [Related]
10. Fibers and 3D mesh scaffolds from biodegradable starch-based blends: production and characterization. Pavlov MP; Mano JF; Neves NM; Reis RL Macromol Biosci; 2004 Aug; 4(8):776-84. PubMed ID: 15468271 [TBL] [Abstract][Full Text] [Related]
11. An in vivo study of the host response to starch-based polymers and composites subcutaneously implanted in rats. Marques AP; Reis RL; Hunt JA Macromol Biosci; 2005 Aug; 5(8):775-85. PubMed ID: 16080170 [TBL] [Abstract][Full Text] [Related]
12. Enzyme-biomaterial interactions: effect of biosystems on degradation of polyurethanes. Santerre JP; Labow RS; Adams GA J Biomed Mater Res; 1993 Jan; 27(1):97-109. PubMed ID: 8421004 [TBL] [Abstract][Full Text] [Related]
13. Starch degradation by glucoamylase Glm from Saccharomycopsis fibuligera IFO 0111 in the presence and absence of a commercial pullulanase. Valachová K; Horváthová V Chem Biodivers; 2007 May; 4(5):874-80. PubMed ID: 17511002 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior. Boesel LF; Azevedo HS; Reis RL Biomacromolecules; 2006 Sep; 7(9):2600-9. PubMed ID: 16961323 [TBL] [Abstract][Full Text] [Related]
15. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends. Tan J; Brash JL J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775 [TBL] [Abstract][Full Text] [Related]
16. Long term in vitro biostability of segmented polyisobutylene-based thermoplastic polyurethanes. Cozzens D; Ojha U; Kulkarni P; Faust R; Desai S J Biomed Mater Res A; 2010 Dec; 95(3):774-82. PubMed ID: 20725977 [TBL] [Abstract][Full Text] [Related]
17. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera. Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776 [TBL] [Abstract][Full Text] [Related]
18. Amylolytic hydrolysis of native starch granules affected by granule surface area. Kim JC; Kong BW; Kim MJ; Lee SH J Food Sci; 2008 Nov; 73(9):C621-4. PubMed ID: 19021791 [TBL] [Abstract][Full Text] [Related]