These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A lack of SUMO conjugation affects cNLS-dependent nuclear protein import in yeast. Stade K; Vogel F; Schwienhorst I; Meusser B; Volkwein C; Nentwig B; Dohmen RJ; Sommer T J Biol Chem; 2002 Dec; 277(51):49554-61. PubMed ID: 12393908 [TBL] [Abstract][Full Text] [Related]
7. Cytoplasmic sumoylation by PIAS-type Siz1-SUMO ligase. Takahashi Y; Iwase M; Strunnikov AV; Kikuchi Y Cell Cycle; 2008 Jun; 7(12):1738-44. PubMed ID: 18583943 [TBL] [Abstract][Full Text] [Related]
8. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Nagai S; Dubrana K; Tsai-Pflugfelder M; Davidson MB; Roberts TM; Brown GW; Varela E; Hediger F; Gasser SM; Krogan NJ Science; 2008 Oct; 322(5901):597-602. PubMed ID: 18948542 [TBL] [Abstract][Full Text] [Related]
9. Assays of SUMO protease/isopeptidase activity and function in mammalian cells and tissues. Kunz K; Müller S; Mendler L Methods Enzymol; 2019; 618():389-410. PubMed ID: 30850061 [TBL] [Abstract][Full Text] [Related]
10. Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Panse VG; Küster B; Gerstberger T; Hurt E Nat Cell Biol; 2003 Jan; 5(1):21-7. PubMed ID: 12471376 [TBL] [Abstract][Full Text] [Related]
11. Signalling pathways and the regulation of SUMO modification. Guo B; Yang SH; Witty J; Sharrocks AD Biochem Soc Trans; 2007 Dec; 35(Pt 6):1414-8. PubMed ID: 18031234 [TBL] [Abstract][Full Text] [Related]
12. Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Zhang H; Saitoh H; Matunis MJ Mol Cell Biol; 2002 Sep; 22(18):6498-508. PubMed ID: 12192048 [TBL] [Abstract][Full Text] [Related]
13. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Reverter D; Lima CD Nature; 2005 Jun; 435(7042):687-92. PubMed ID: 15931224 [TBL] [Abstract][Full Text] [Related]
14. Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 autoSUMOylation reaction. Cooper HJ; Tatham MH; Jaffray E; Heath JK; Lam TT; Marshall AG; Hay RT Anal Chem; 2005 Oct; 77(19):6310-9. PubMed ID: 16194093 [TBL] [Abstract][Full Text] [Related]
15. Characterization of SENP7, a SUMO-2/3-specific isopeptidase. Shen LN; Geoffroy MC; Jaffray EG; Hay RT Biochem J; 2009 Jun; 421(2):223-30. PubMed ID: 19392659 [TBL] [Abstract][Full Text] [Related]
16. DeSUMOylating isopeptidase: a second class of SUMO protease. Shin EJ; Shin HM; Nam E; Kim WS; Kim JH; Oh BH; Yun Y EMBO Rep; 2012 Apr; 13(4):339-46. PubMed ID: 22370726 [TBL] [Abstract][Full Text] [Related]
17. Interplay between nuclear transport and ubiquitin/SUMO modifications in the regulation of cancer-related proteins. Rodríguez JA Semin Cancer Biol; 2014 Aug; 27():11-9. PubMed ID: 24704338 [TBL] [Abstract][Full Text] [Related]
18. Drosophila Ulp1, a nuclear pore-associated SUMO protease, prevents accumulation of cytoplasmic SUMO conjugates. Smith M; Bhaskar V; Fernandez J; Courey AJ J Biol Chem; 2004 Oct; 279(42):43805-14. PubMed ID: 15294908 [TBL] [Abstract][Full Text] [Related]
19. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Owerbach D; McKay EM; Yeh ET; Gabbay KH; Bohren KM Biochem Biophys Res Commun; 2005 Nov; 337(2):517-20. PubMed ID: 16198310 [TBL] [Abstract][Full Text] [Related]
20. PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription. Palvimo JJ Biochem Soc Trans; 2007 Dec; 35(Pt 6):1405-8. PubMed ID: 18031232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]