These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 14607275)
1. Replacement of the alpha5 helix of Galpha16 with Galphas-specific sequences enhances promiscuity of Galpha16 toward Gs-coupled receptors. Hazari A; Lowes V; Chan JH; Wong CS; Ho MK; Wong YH Cell Signal; 2004 Jan; 16(1):51-62. PubMed ID: 14607275 [TBL] [Abstract][Full Text] [Related]
2. Incorporation of Galpha(z)-specific sequence at the carboxyl terminus increases the promiscuity of galpha(16) toward G(i)-coupled receptors. Mody SM; Ho MK; Joshi SA; Wong YH Mol Pharmacol; 2000 Jan; 57(1):13-23. PubMed ID: 10617674 [TBL] [Abstract][Full Text] [Related]
3. The beta6/alpha5 regions of Galphai2 and GalphaoA increase the promiscuity of Galpha16 but are insufficient for pertussis toxin-catalyzed ADP-ribosylation. Wong CS; Ho MK; Wong YH Eur J Pharmacol; 2003 Jul; 473(2-3):105-15. PubMed ID: 12892827 [TBL] [Abstract][Full Text] [Related]
4. Galpha(16/z) chimeras efficiently link a wide range of G protein-coupled receptors to calcium mobilization. Liu AM; Ho MK; Wong CS; Chan JH; Pau AH; Wong YH J Biomol Screen; 2003 Feb; 8(1):39-49. PubMed ID: 12854997 [TBL] [Abstract][Full Text] [Related]
5. Galpha(14) links a variety of G(i)- and G(s)-coupled receptors to the stimulation of phospholipase C. Ho MK; Yung LY; Chan JS; Chan JH; Wong CS; Wong YH Br J Pharmacol; 2001 Apr; 132(7):1431-40. PubMed ID: 11264236 [TBL] [Abstract][Full Text] [Related]
6. Identification of a novel site within G protein alpha subunits important for specificity of receptor-G protein interaction. Heydorn A; Ward RJ; Jorgensen R; Rosenkilde MM; Frimurer TM; Milligan G; Kostenis E Mol Pharmacol; 2004 Aug; 66(2):250-9. PubMed ID: 15266015 [TBL] [Abstract][Full Text] [Related]
7. Variable G protein determinants of GPCR coupling selectivity. Okashah N; Wan Q; Ghosh S; Sandhu M; Inoue A; Vaidehi N; Lambert NA Proc Natl Acad Sci U S A; 2019 Jun; 116(24):12054-12059. PubMed ID: 31142646 [TBL] [Abstract][Full Text] [Related]
8. Stimulation of increases in intracellular calcium and prostaglandin E2 generation in Chinese hamster ovary cells expressing receptor-Galpha16 fusion proteins. Suga H; Takeda S; Haga T; Okamura M; Takao K; Tatemoto K J Biochem; 2004 May; 135(5):605-13. PubMed ID: 15173199 [TBL] [Abstract][Full Text] [Related]
9. Identification of a stretch of six divergent amino acids on the alpha5 helix of Galpha16 as a major determinant of the promiscuity and efficiency of receptor coupling. Ho MK; Chan JH; Wong CS; Wong YH Biochem J; 2004 Jun; 380(Pt 2):361-9. PubMed ID: 15005654 [TBL] [Abstract][Full Text] [Related]
10. The human histamine H2-receptor couples more efficiently to Sf9 insect cell Gs-proteins than to insect cell Gq-proteins: limitations of Sf9 cells for the analysis of receptor/Gq-protein coupling. Houston C; Wenzel-Seifert K; Bürckstümmer T; Seifert R J Neurochem; 2002 Feb; 80(4):678-96. PubMed ID: 11841575 [TBL] [Abstract][Full Text] [Related]
11. Molecular determinants for the differential coupling of Galpha(16) to the melatonin MT1, MT2 and Xenopus Mel1c receptors. Lai FP; Mody SM; Yung LY; Kam JY; Pang CS; Pang SF; Wong YH J Neurochem; 2002 Mar; 80(5):736-45. PubMed ID: 11948236 [TBL] [Abstract][Full Text] [Related]
12. Use of Caenorhabditis elegans G{alpha}q chimeras to detect G-protein-coupled receptor signals. Walker MW; Jones KA; Tamm J; Zhong H; Smith KE; Gerald C; Vaysse P; Branchek TA J Biomol Screen; 2005 Mar; 10(2):127-36. PubMed ID: 15799956 [TBL] [Abstract][Full Text] [Related]
13. Pivotal role of extended linker 2 in the activation of Gα by G protein-coupled receptor. Huang J; Sun Y; Zhang JJ; Huang XY J Biol Chem; 2015 Jan; 290(1):272-83. PubMed ID: 25414258 [TBL] [Abstract][Full Text] [Related]
14. Constitutive signaling of the human cytomegalovirus-encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi, and Gs classes. Casarosa P; Gruijthuijsen YK; Michel D; Beisser PS; Holl J; Fitzsimons CP; Verzijl D; Bruggeman CA; Mertens T; Leurs R; Vink C; Smit MJ J Biol Chem; 2003 Dec; 278(50):50010-23. PubMed ID: 14522997 [TBL] [Abstract][Full Text] [Related]
15. Phosphatidic acid regulates signal output by G protein coupled receptors through direct interaction with phospholipase C-beta(1). Litosch I; Pujari R; Lee SJ Cell Signal; 2009 Sep; 21(9):1379-84. PubMed ID: 19414067 [TBL] [Abstract][Full Text] [Related]
16. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling. Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796 [TBL] [Abstract][Full Text] [Related]
17. Gα16 interacts with tetratricopeptide repeat 1 (TPR1) through its β3 region to activate Ras independently of phospholipase Cβ signaling. Liu AM; Lo RKh; Guo EX; Ho MK; Ye RD; Wong YH BMC Struct Biol; 2011 Apr; 11():17. PubMed ID: 21486497 [TBL] [Abstract][Full Text] [Related]
18. Signaling from G protein-coupled receptors to ERK5/Big MAPK 1 involves Galpha q and Galpha 12/13 families of heterotrimeric G proteins. Evidence for the existence of a novel Ras AND Rho-independent pathway. Fukuhara S; Marinissen MJ; Chiariello M; Gutkind JS J Biol Chem; 2000 Jul; 275(28):21730-6. PubMed ID: 10781600 [TBL] [Abstract][Full Text] [Related]
19. Functional interaction between T2R taste receptors and G-protein alpha subunits expressed in taste receptor cells. Ueda T; Ugawa S; Yamamura H; Imaizumi Y; Shimada S J Neurosci; 2003 Aug; 23(19):7376-80. PubMed ID: 12917372 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the role of the carboxyl-terminal tails of the alpha and beta isoforms of the human thromboxane A(2) receptor (TP) in mediating receptor:effector coupling. Walsh M; Foley JF; Kinsella BT Biochim Biophys Acta; 2000 Apr; 1496(2-3):164-82. PubMed ID: 10771086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]