These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. [Characteristics of soil microbial biomass and community composition in three types of plantations in southern subtropical area of China]. Wang WX; Shi ZM; Luo D; Liu SR; Lu LH Ying Yong Sheng Tai Xue Bao; 2013 Jul; 24(7):1784-92. PubMed ID: 24175505 [TBL] [Abstract][Full Text] [Related]
63. [Microbial diversity in rhizosphere soil of transgenic Bt rice based on the characterization of phospholipids fatty acids]. Liu W; Wang ST; Chen YX; Wu WX; Wang J Ying Yong Sheng Tai Xue Bao; 2011 Mar; 22(3):727-33. PubMed ID: 21657031 [TBL] [Abstract][Full Text] [Related]
64. Standardizing methylation method during phospholipid fatty acid analysis to profile soil microbial communities. Chowdhury TR; Dick RP J Microbiol Methods; 2012 Feb; 88(2):285-91. PubMed ID: 22212759 [TBL] [Abstract][Full Text] [Related]
65. Different marine heterotrophic nanoflagellates affect differentially the composition of enriched bacterial communities. Vázquez-Domínguez E; Casamayor EO; Català P; Lebaron P Microb Ecol; 2005 Apr; 49(3):474-85. PubMed ID: 16003474 [TBL] [Abstract][Full Text] [Related]
66. Litter quality as driving factor for plant nutrition via grazing of protozoa on soil microorganisms. Koller R; Robin C; Bonkowski M; Ruess L; Scheu S FEMS Microbiol Ecol; 2013 Aug; 85(2):241-50. PubMed ID: 23521364 [TBL] [Abstract][Full Text] [Related]
67. Microbiology Meets Archaeology: Soil Microbial Communities Reveal Different Human Activities at Archaic Monte Iato (Sixth Century BC). Margesin R; Siles JA; Cajthaml T; Öhlinger B; Kistler E Microb Ecol; 2017 May; 73(4):925-938. PubMed ID: 27966037 [TBL] [Abstract][Full Text] [Related]
68. Carbon isotopic fractionation in lipids from methanotrophic bacteria II: the effects of physiology and environmental parameters on the biosynthesis and isotopic signatures of biomarkers. Jahnke LL; Summons RE; Hope JM; Des Marais DJ Geochim Cosmochim Acta; 1999 Jan; 63(1):79-93. PubMed ID: 11541777 [TBL] [Abstract][Full Text] [Related]
69. Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate. Altenschmidt U; Fuchs G Arch Microbiol; 1991; 156(2):152-8. PubMed ID: 1781729 [TBL] [Abstract][Full Text] [Related]
70. Rhizospheric effects on the microbial community of e-waste-contaminated soils using phospholipid fatty acid and isoprenoid glycerol dialkyl glycerol tetraether analyses. Song M; Cheng Z; Luo C; Jiang L; Zhang D; Yin H; Zhang G Environ Sci Pollut Res Int; 2018 Apr; 25(10):9904-9914. PubMed ID: 29374376 [TBL] [Abstract][Full Text] [Related]
71. Comparison of rRNA and polar-lipid-derived fatty acid biomarkers for assessment of 13C-substrate incorporation by microorganisms in marine sediments. MacGregor BJ; Boschker HT; Amann R Appl Environ Microbiol; 2006 Aug; 72(8):5246-53. PubMed ID: 16885272 [TBL] [Abstract][Full Text] [Related]
72. Fatty acids as a tool to understand microbial diversity and their role in food webs of Mediterranean temporary ponds. de Carvalho CC; Caramujo MJ Molecules; 2014 Apr; 19(5):5570-98. PubMed ID: 24786844 [TBL] [Abstract][Full Text] [Related]
73. Investigations of microbial degradation of polycyclic aromatic hydrocarbons based on Wawra A; Friesl-Hanl W; Jäger A; Puschenreiter M; Soja G; Reichenauer T; Watzinger A Environ Sci Pollut Res Int; 2018 Mar; 25(7):6364-6377. PubMed ID: 29249024 [TBL] [Abstract][Full Text] [Related]
74. Impact of imazethapyr on the microbial community structure in agricultural soils. Zhang C; Xu J; Liu X; Dong F; Kong Z; Sheng Y; Zheng Y Chemosphere; 2010 Oct; 81(6):800-6. PubMed ID: 20659755 [TBL] [Abstract][Full Text] [Related]
75. Isolation and characterization of Magnetospirillum sp. strain 15-1 as a representative anaerobic toluene-degrader from a constructed wetland model. Meyer-Cifuentes I; Martinez-Lavanchy PM; Marin-Cevada V; Böhnke S; Harms H; Müller JA; Heipieper HJ PLoS One; 2017; 12(4):e0174750. PubMed ID: 28369150 [TBL] [Abstract][Full Text] [Related]
77. Profiling of soil fatty acids using comprehensive two-dimensional gas chromatography with mass spectrometry detection. Zeng AX; Chin ST; Patti A; Marriott PJ J Chromatogr A; 2013 Nov; 1317():239-45. PubMed ID: 24041509 [TBL] [Abstract][Full Text] [Related]
78. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Balasubramanian V; Natarajan K; Hemambika B; Ramesh N; Sumathi CS; Kottaimuthu R; Rajesh Kannan V Lett Appl Microbiol; 2010 Aug; 51(2):205-11. PubMed ID: 20586938 [TBL] [Abstract][Full Text] [Related]
79. A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. Bodelier PL; Gillisen MJ; Hordijk K; Damsté JS; Rijpstra WI; Geenevasen JA; Dunfield PF ISME J; 2009 May; 3(5):606-17. PubMed ID: 19194481 [TBL] [Abstract][Full Text] [Related]
80. Effects of application of corn straw on soil microbial community structure during the maize growing season. Lu P; Lin YH; Yang ZQ; Xu YP; Tan F; Jia XD; Wang M; Xu DR; Wang XZ J Basic Microbiol; 2015 Jan; 55(1):22-32. PubMed ID: 24652702 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]