These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 14607473)

  • 1. Air distribution in the Borden aquifer during in situ air sparging.
    Tomlinson DW; Thomson NR; Johnson RL; Redman JD
    J Contam Hydrol; 2003 Dec; 67(1-4):113-32. PubMed ID: 14607473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.
    Yoon H; Valocchi AJ; Werth CJ
    J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of ground penetrating radar attenuation tomography in a vadose zone infiltration experiment.
    Chang PY; Alumbaugh D; Brainard J; Hall L
    J Contam Hydrol; 2004 Jul; 71(1-4):67-87. PubMed ID: 15145562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the change of porosity in the saturated zone during air sparging.
    Tsai YJ; Kuo YC; Chen TC; Chou FC
    J Environ Sci (China); 2006; 18(4):675-9. PubMed ID: 17078545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field.
    Hwang YK; Endres AL; Piggott SD; Parker BL
    J Contam Hydrol; 2008 Apr; 97(1-2):1-12. PubMed ID: 18258330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant-enhanced air sparging in saturated sand.
    Kim H; Soh HE; Annable MD; Kim DJ
    Environ Sci Technol; 2004 Feb; 38(4):1170-5. PubMed ID: 14998033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging.
    Tsai YJ
    J Hazard Mater; 2007 Apr; 142(1-2):315-23. PubMed ID: 16978774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superposition of borehole-to-surface voltage residuals for Vadose Zone plume delineation.
    Osiensky JL; Belknap WJ; Donaldson PR
    J Contam Hydrol; 2006 Jan; 82(3-4):241-54. PubMed ID: 16298016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unidirectional gas flow in soil porosity resulting from barometric pressure cycles.
    Neeper DA; Stauffer P
    J Contam Hydrol; 2005 Aug; 78(4):281-9. PubMed ID: 16039012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in air saturation and air-water interfacial area during surfactant-enhanced air sparging in saturated sand.
    Kim H; Choi KM; Moon JW; Annable MD
    J Contam Hydrol; 2006 Nov; 88(1-2):23-35. PubMed ID: 16872716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of water velocity in the capillary fringe: the point velocity probe.
    Berg SJ; Gillham RW
    Ground Water; 2010; 48(1):59-67. PubMed ID: 19664049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating the fate and transport of TCE from groundwater to indoor air.
    Yu S; Unger AJ; Parker B
    J Contam Hydrol; 2009 Jul; 107(3-4):140-61. PubMed ID: 19525028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air distribution and size changes in the remediated zone after air sparging for soil particle movement.
    Tsai YJ
    J Hazard Mater; 2008 Oct; 158(2-3):438-44. PubMed ID: 18337001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia.
    Johnston CD; Rayner JL; Briegel D
    J Contam Hydrol; 2002 Nov; 59(1-2):87-111. PubMed ID: 12683641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory and field testing for utilization of an excavated soil as landfill liner material.
    Bozbey I; Guler E
    Waste Manag; 2006; 26(11):1277-86. PubMed ID: 16376067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types.
    Kodesová R; Vignozzi N; Rohosková M; Hájková T; Kocárek M; Pagliai M; Kozák J; Simůnek J
    J Contam Hydrol; 2009 Feb; 104(1-4):107-25. PubMed ID: 19062128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of skin and hydraulic fractures on SVE wells.
    Bradner GC; Murdoch LC
    J Contam Hydrol; 2005 May; 77(4):271-97. PubMed ID: 15854720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuel-grade ethanol transport and impacts to groundwater in a pilot-scale aquifer tank.
    Cápiro NL; Stafford BP; Rixey WG; Bedient PB; Alvarez PJ
    Water Res; 2007 Feb; 41(3):656-64. PubMed ID: 17126874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centrifugal study of zone of influence during air-sparging.
    Hu L; Meegoda JN; Du J; Gao S; Wu X
    J Environ Monit; 2011 Sep; 13(9):2443-9. PubMed ID: 21755071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.