These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 14607474)
41. Effects of initial saturation on properties modification and displacement of tetrachloroethene with aqueous isobutanol. Boyd GR; Ocampo-Gómez AM; Li M; Husserl J J Contam Hydrol; 2006 Nov; 88(1-2):69-91. PubMed ID: 16904790 [TBL] [Abstract][Full Text] [Related]
42. Laboratory evidence of natural remobilization of multicomponent DNAPL pools due to dissolution. Roy JW; Smith JE; Gillham RW J Contam Hydrol; 2004 Oct; 74(1-4):145-61. PubMed ID: 15358491 [TBL] [Abstract][Full Text] [Related]
43. Quantitative imaging of contaminant distributions in heterogeneous porous media laboratory experiments. McNeil JD; Oldenborger GA; Schincariol RA J Contam Hydrol; 2006 Mar; 84(1-2):36-54. PubMed ID: 16455153 [TBL] [Abstract][Full Text] [Related]
44. Three-dimensional visualization and quantification of non-aqueous phase liquid volumes in natural porous media using a medical X-ray Computed Tomography scanner. Goldstein L; Prasher SO; Ghoshal S J Contam Hydrol; 2007 Aug; 93(1-4):96-110. PubMed ID: 17350716 [TBL] [Abstract][Full Text] [Related]
45. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
46. Solvent release into a sandy aquifer. 2. Estimation of DNAPL mass based on a multiple-component dissolution model. Broholm K; Feenstra S; Cherry JA Environ Sci Technol; 2005 Jan; 39(1):317-24. PubMed ID: 15667112 [TBL] [Abstract][Full Text] [Related]
47. Dissolution of dense non-aqueous phase liquids in vertical fractures: effect of finger residuals and dead-end pools. Yang Z; Niemi A; Fagerlund F; Illangasekare T; Detwiler RL J Contam Hydrol; 2013 Jun; 149():88-99. PubMed ID: 23608741 [TBL] [Abstract][Full Text] [Related]
48. Macro-scale effective constitutive relationships for two-phase flow processes in heterogeneous porous media with emphasis on the relative permeability-saturation relationship. Braun C; Helmig R; Manthey S J Contam Hydrol; 2005 Jan; 76(1-2):47-85. PubMed ID: 15588573 [TBL] [Abstract][Full Text] [Related]
49. Flow behavior and residual saturation formation of liquid carbon tetrachloride in unsaturated heterogeneous porous media. Oostrom M; Hofstee C; Lenhard RJ; Wietsma TW J Contam Hydrol; 2003 Jun; 64(1-2):93-112. PubMed ID: 12744831 [TBL] [Abstract][Full Text] [Related]
50. The transport behaviour of elemental mercury DNAPL in saturated porous media: analysis of field observations and two-phase flow modelling. Sweijen T; Hartog N; Marsman A; Keijzer TJ J Contam Hydrol; 2014 Jun; 161():24-34. PubMed ID: 24748026 [TBL] [Abstract][Full Text] [Related]
51. Amendment of hydroxyapatite in reduction of tetrachloroethylene by zero-valent zinc: its rate enhancing effect and removal of Zn(II). Song H; Carraway ER; Kim YH; Batchelor B; Jeon BH; Kim JG Chemosphere; 2008 Nov; 73(9):1420-7. PubMed ID: 18823642 [TBL] [Abstract][Full Text] [Related]
52. Influence of wettability and saturation on liquid-liquid interfacial area in porous media. Jain V; Bryant S; Sharma M Environ Sci Technol; 2003 Feb; 37(3):584-91. PubMed ID: 12630476 [TBL] [Abstract][Full Text] [Related]
53. Insights into the use of time-lapse GPR data as observations for inverse multiphase flow simulations of DNAPL migration. Johnson RH; Poeter EP J Contam Hydrol; 2007 Jan; 89(1-2):136-55. PubMed ID: 17050034 [TBL] [Abstract][Full Text] [Related]
54. A small subsurface ion mobility spectrometer sensor for detecting environmental soil-gas contaminants. Kanu AB; Hill HH; Gribb MM; Walters RN J Environ Monit; 2007 Jan; 9(1):51-60. PubMed ID: 17213942 [TBL] [Abstract][Full Text] [Related]
55. Impact of wettability on pore-scale characteristics of residual nonaqueous phase liquids. Al-Raoush RI Environ Sci Technol; 2009 Jul; 43(13):4796-801. PubMed ID: 19673267 [TBL] [Abstract][Full Text] [Related]
56. Effects of ethanol addition on micellar solubilization and plume migration during surfactant enhanced recovery of tetrachloroethene. Taylor TP; Rathfelder KM; Pennell KD; Abriola LM J Contam Hydrol; 2004 Mar; 69(1-2):73-99. PubMed ID: 14972438 [TBL] [Abstract][Full Text] [Related]
57. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points. Saenton S; Illangasekare TH; Soga K; Saba TA J Contam Hydrol; 2002 Nov; 59(1-2):27-44. PubMed ID: 12683638 [TBL] [Abstract][Full Text] [Related]
58. Parametric sensitivity analysis of leachate transport simulations at landfills. Bou-Zeid E; El-Fadel M Waste Manag; 2004; 24(7):681-9. PubMed ID: 15288300 [TBL] [Abstract][Full Text] [Related]
59. Spatiotemporal nonattainment assessment of surface water tetrachloroethylene in New Jersey. Akita Y; Carter G; Serre ML J Environ Qual; 2007; 36(2):508-20. PubMed ID: 17332255 [TBL] [Abstract][Full Text] [Related]
60. Effect of scale and dimensionality on the surfactant-enhanced solubilization of a residual DNAPL contamination. Schaerlaekens J; Feyen J J Contam Hydrol; 2004 Jul; 71(1-4):283-306. PubMed ID: 15145571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]