These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 14608391)
1. Structure and evolution of the Cinful retrotransposon family of maize. Sanz-Alferez S; SanMiguel P; Jin YK; Springer PS; Bennetzen JL Genome; 2003 Oct; 46(5):745-52. PubMed ID: 14608391 [TBL] [Abstract][Full Text] [Related]
2. The Wukong Terminal-Repeat Retrotransposon in Miniature (TRIM) Elements in Diverse Maize Germplasm. Liu Z; Li X; Wang T; Messing J; Xu JH G3 (Bethesda); 2015 May; 5(8):1585-92. PubMed ID: 26019188 [TBL] [Abstract][Full Text] [Related]
3. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. Baucom RS; Estill JC; Chaparro C; Upshaw N; Jogi A; Deragon JM; Westerman RP; Sanmiguel PJ; Bennetzen JL PLoS Genet; 2009 Nov; 5(11):e1000732. PubMed ID: 19936065 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons. Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781 [TBL] [Abstract][Full Text] [Related]
5. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006 [TBL] [Abstract][Full Text] [Related]
6. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Meyers BC; Tingey SV; Morgante M Genome Res; 2001 Oct; 11(10):1660-76. PubMed ID: 11591643 [TBL] [Abstract][Full Text] [Related]
7. The paleontology of intergene retrotransposons of maize. SanMiguel P; Gaut BS; Tikhonov A; Nakajima Y; Bennetzen JL Nat Genet; 1998 Sep; 20(1):43-5. PubMed ID: 9731528 [TBL] [Abstract][Full Text] [Related]
8. CsRn1, a novel active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons. Bae YA; Moon SY; Kong Y; Cho SY; Rhyu MG Mol Biol Evol; 2001 Aug; 18(8):1474-83. PubMed ID: 11470838 [TBL] [Abstract][Full Text] [Related]
9. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Wright DA; Voytas DF Genetics; 1998 Jun; 149(2):703-15. PubMed ID: 9611185 [TBL] [Abstract][Full Text] [Related]
10. Retrotranspositions in orthologous regions of closely related grass species. Du C; Swigonová Z; Messing J BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031 [TBL] [Abstract][Full Text] [Related]
11. What makes Grande1 retrotransposon different? Martínez-Izquierdo JA; García-Martínez J; Vicient CM Genetica; 1997; 100(1-3):15-28. PubMed ID: 9440255 [TBL] [Abstract][Full Text] [Related]
12. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070 [TBL] [Abstract][Full Text] [Related]
13. Study on the evolution of the grande retrotransposon in the zea genus. García-Martínez J; Martínez-Izquierdo JA Mol Biol Evol; 2003 May; 20(5):831-41. PubMed ID: 12679538 [TBL] [Abstract][Full Text] [Related]
14. PpRT1: the first complete gypsy-like retrotransposon isolated in Pinus pinaster. Rocheta M; Cordeiro J; Oliveira M; Miguel C Planta; 2007 Feb; 225(3):551-62. PubMed ID: 17008993 [TBL] [Abstract][Full Text] [Related]
15. Zeon-1, a member of a new maize retrotransposon family. Hu W; Das OP; Messing J Mol Gen Genet; 1995 Aug; 248(4):471-80. PubMed ID: 7565611 [TBL] [Abstract][Full Text] [Related]
16. Different classes of retrotransposons in coniferous spruce species. L'Homme Y; Séguin A; Tremblay FM Genome; 2000 Dec; 43(6):1084-9. PubMed ID: 11195342 [TBL] [Abstract][Full Text] [Related]
17. Extreme structural heterogeneity among the members of a maize retrotransposon family. Marillonnet S; Wessler SR Genetics; 1998 Nov; 150(3):1245-56. PubMed ID: 9799276 [TBL] [Abstract][Full Text] [Related]
18. Genomic evolution of the long terminal repeat retrotransposons in hemiascomycetous yeasts. Neuvéglise C; Feldmann H; Bon E; Gaillardin C; Casaregola S Genome Res; 2002 Jun; 12(6):930-43. PubMed ID: 12045146 [TBL] [Abstract][Full Text] [Related]
19. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Choi HI; Waminal NE; Park HM; Kim NH; Choi BS; Park M; Choi D; Lim YP; Kwon SJ; Park BS; Kim HH; Yang TJ Plant J; 2014 Mar; 77(6):906-16. PubMed ID: 24456463 [TBL] [Abstract][Full Text] [Related]
20. Identification and characterization of novel retrotransposons of the gypsy type in rice. Kumekawa N; Ohtsubo H; Horiuchi T; Ohtsubo E Mol Gen Genet; 1999 Jan; 260(6):593-602. PubMed ID: 9928939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]