These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 14608607)

  • 1. Acute CO2 tolerance during the early developmental stages of four marine teleosts.
    Kikkawa T; Ishimatsu A; Kita J
    Environ Toxicol; 2003 Dec; 18(6):375-82. PubMed ID: 14608607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the lethal effect of CO2 and acidification on red sea bream (Pagrus major) during the early developmental stages.
    Kikkawa T; Kita J; Ishimatsu A
    Mar Pollut Bull; 2004 Jan; 48(1-2):108-10. PubMed ID: 14725881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute toxicity of temporally varying seawater CO2 conditions on juveniles of Japanese sillago (Sillago japonica).
    Kikkawa T; Sato T; Kita J; Ishimatsu A
    Mar Pollut Bull; 2006 Jun; 52(6):621-5. PubMed ID: 16324721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxic effects of zinc on the development, growth, and survival of red sea bream Pagrus major embryos and larvae.
    Huang W; Cao L; Shan X; Xiao Z; Wang Q; Dou S
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):140-50. PubMed ID: 19504147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the acid-base responses to CO2 and acidification in Japanese flounder (Paralichthys olivaceus).
    Hayashi M; Kita J; Ishimatsu A
    Mar Pollut Bull; 2004 Dec; 49(11-12):1062-5. PubMed ID: 15556193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4-12 months) acclimation to elevated seawater P(CO2).
    Melzner F; Göbel S; Langenbuch M; Gutowska MA; Pörtner HO; Lucassen M
    Aquat Toxicol; 2009 Apr; 92(1):30-7. PubMed ID: 19223084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea).
    Kurihara H; Shimode S; Shirayama Y
    Mar Pollut Bull; 2004 Nov; 49(9-10):721-7. PubMed ID: 15530515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations.
    Kurihara H; Ishimatsu A
    Mar Pollut Bull; 2008 Jun; 56(6):1086-90. PubMed ID: 18455195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-lethal and lethal toxicities of elevated CO
    Lee C; Kwon BO; Hong S; Noh J; Lee J; Ryu J; Kang SG; Khim JS
    Environ Pollut; 2018 Oct; 241():586-595. PubMed ID: 29885629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suitability of cryoprotectants and impregnation protocols for embryos of Japanese whiting Sillago japonica.
    Rahman SM; Majhi SK; Suzuki T; Matsukawa S; Strüssmann CA; Takai R
    Cryobiology; 2008 Oct; 57(2):170-4. PubMed ID: 18761007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic and larval staging of summer flounder (Paralichthys dentatus).
    Martinez GM; Bolker JA
    J Morphol; 2003 Feb; 255(2):162-76. PubMed ID: 12474264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay.
    Stumpp M; Wren J; Melzner F; Thorndyke MC; Dupont ST
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):331-40. PubMed ID: 21742050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification.
    Todgham AE; Hofmann GE
    J Exp Biol; 2009 Aug; 212(Pt 16):2579-94. PubMed ID: 19648403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era.
    Came RE; Eiler JM; Veizer J; Azmy K; Brand U; Weidman CR
    Nature; 2007 Sep; 449(7159):198-201. PubMed ID: 17851520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological changes in branchial mitochondria-rich cells of the teleost Paralichthys olivaceus as a potential indicator of CO2 impacts.
    Hayashi M; Kikkawa T; Ishimatsu A
    Mar Pollut Bull; 2013 Aug; 73(2):409-15. PubMed ID: 23838416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunocytochemical studies of the ontogeny of peripheral blood leucocyte subpopulations in Japanese flounder (Paralichthys olivaceus).
    Matsuyama T; Nakayasu C; Sano M
    Fish Shellfish Immunol; 2010 Aug; 29(2):362-5. PubMed ID: 20380882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium toxicity to embryonic-larval development and survival in red sea bream Pagrus major.
    Cao L; Huang W; Shan X; Xiao Z; Wang Q; Dou S
    Ecotoxicol Environ Saf; 2009 Oct; 72(7):1966-74. PubMed ID: 19573918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryopreservation of flounder (Paralichthys olivaceus) embryos by vitrification.
    Chen SL; Tian YS
    Theriogenology; 2005 Mar; 63(4):1207-19. PubMed ID: 15710204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Larval development of some Bregmaceros species (Pisces: Bregmacerotidae) from the southeast Gulf of Mexico].
    Blas-Cabrera J; Sánchez-Ramírez M; Ocaña-Luna A
    Rev Biol Trop; 2006 Jun; 54(2):561-75. PubMed ID: 18494323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae).
    Pedersen SA; Våge VT; Olsen AJ; Hammer KM; Altin D
    J Toxicol Environ Health A; 2014; 77(9-11):535-49. PubMed ID: 24754390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.