These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 14608665)
21. Roles of 5-hydroxytryptamine (5-HT) receptor subtypes in the inhibitory effects of 5-HT on C-fiber responses of spinal wide dynamic range neurons in rats. Liu FY; Xing GG; Qu XX; Xu IS; Han JS; Wan Y J Pharmacol Exp Ther; 2007 Jun; 321(3):1046-53. PubMed ID: 17329553 [TBL] [Abstract][Full Text] [Related]
22. Mixtures of octopamine and serotonin have nonadditive effects on the CNS of the medicinal leech. Mesce KA; Crisp KM; Gilchrist LS J Neurophysiol; 2001 May; 85(5):2039-46. PubMed ID: 11353020 [TBL] [Abstract][Full Text] [Related]
23. Serotonin modulates dendritic calcium influx in commissural interneurons in the mouse spinal locomotor network. Díaz-Ríos M; Dombeck DA; Webb WW; Harris-Warrick RM J Neurophysiol; 2007 Oct; 98(4):2157-67. PubMed ID: 17581844 [TBL] [Abstract][Full Text] [Related]
24. 5-HT prolongs ventral root bursting via presynaptic inhibition of synaptic activity during fictive locomotion in lamprey. Schwartz EJ; Gerachshenko T; Alford S J Neurophysiol; 2005 Feb; 93(2):980-8. PubMed ID: 15456802 [TBL] [Abstract][Full Text] [Related]
25. 5-hydroxytryptamine1A-like receptor activation in the bed nucleus of the stria terminalis: electrophysiological and behavioral studies. Levita L; Hammack SE; Mania I; Li XY; Davis M; Rainnie DG Neuroscience; 2004; 128(3):583-96. PubMed ID: 15381287 [TBL] [Abstract][Full Text] [Related]
26. Role of dorsal raphe nucleus 5-HT(1A) and 5-HT(2) receptors in tonic immobility modulation in guinea pigs. Ferreira MD; Menescal-de-Oliveira L Brain Res; 2009 Aug; 1285():69-76. PubMed ID: 19538947 [TBL] [Abstract][Full Text] [Related]
27. Maturation of rhythmic neural network: role of central modulatory inputs. Fénelon V; Le Feuvre Y; Bem T; Meyrand P J Physiol Paris; 2003 Jan; 97(1):59-68. PubMed ID: 14706691 [TBL] [Abstract][Full Text] [Related]
28. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord. Hinckley C; Seebach B; Ziskind-Conhaim L Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878 [TBL] [Abstract][Full Text] [Related]
29. Excitability of small-diameter trigeminal ganglion neurons by 5-HT is mediated by enhancement of the tetrodotoxin-resistant sodium current due to the activation of 5-HT(4) receptors and/or by the inhibition of the transient potassium current. Tsutsui Y; Ikeda M; Takeda M; Matsumoto S Neuroscience; 2008 Dec; 157(3):683-96. PubMed ID: 18926885 [TBL] [Abstract][Full Text] [Related]
30. Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal firing of the midbrain raphe nuclei 5-HT neurons and a decrease of their response to 5-HT(1A) receptor stimulation in the rat. Wang S; Zhang QJ; Liu J; Wu ZH; Wang T; Gui ZH; Chen L; Wang Y Neuroscience; 2009 Mar; 159(2):850-61. PubMed ID: 19174182 [TBL] [Abstract][Full Text] [Related]
31. Serotonin-induced in vitro long-term facilitation exhibits differential pattern sensitivity in cervical and thoracic inspiratory motor output. Lovett-Barr MR; Mitchell GS; Satriotomo I; Johnson SM Neuroscience; 2006 Oct; 142(3):885-92. PubMed ID: 16893610 [TBL] [Abstract][Full Text] [Related]
32. Origin of excitatory drive to a spinal locomotor network. Roberts A; Li WC; Soffe SR; Wolf E Brain Res Rev; 2008 Jan; 57(1):22-8. PubMed ID: 17825424 [TBL] [Abstract][Full Text] [Related]
33. Development of the serotonergic system in the central nervous system of the sea lamprey. Abalo XM; Villar-Cheda B; Meléndez-Ferro M; Pérez-Costas E; Anadón R; Rodicio MC J Chem Neuroanat; 2007 Sep; 34(1-2):29-46. PubMed ID: 17485194 [TBL] [Abstract][Full Text] [Related]
34. GABAergic synaptic transmission modulates swimming in the ascidian larva. Brown ER; Nishino A; Bone Q; Meinertzhagen IA; Okamura Y Eur J Neurosci; 2005 Nov; 22(10):2541-8. PubMed ID: 16307596 [TBL] [Abstract][Full Text] [Related]
35. Activation of a multisensory, multifunctional nucleus in the zebrafish midbrain during diverse locomotor behaviors. Sankrithi NS; O'Malley DM Neuroscience; 2010 Mar; 166(3):970-93. PubMed ID: 20074619 [TBL] [Abstract][Full Text] [Related]
36. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis). Böser S; Dournon C; Gualandris-Parisot L; Horn E Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444 [TBL] [Abstract][Full Text] [Related]
37. Differential effects of 5-HT1 and 5-HT2 receptor agonists on hindlimb movements in paraplegic mice. Landry ES; Guertin PA Prog Neuropsychopharmacol Biol Psychiatry; 2004 Sep; 28(6):1053-60. PubMed ID: 15380867 [TBL] [Abstract][Full Text] [Related]
38. Group I mGluRs increase locomotor network excitability in Xenopus tadpoles via presynaptic inhibition of glycinergic neurotransmission. Chapman RJ; Issberner JP; Sillar KT Eur J Neurosci; 2008 Sep; 28(5):903-13. PubMed ID: 18691329 [TBL] [Abstract][Full Text] [Related]
39. Effects of serotonin on the intrinsic membrane properties of layer II medial entorhinal cortex neurons. Ma L; Shalinsky MH; Alonso A; Dickson CT Hippocampus; 2007; 17(2):114-29. PubMed ID: 17146777 [TBL] [Abstract][Full Text] [Related]
40. Whole-cell patch-clamp recordings from identified spinal neurons in the zebrafish embryo. Saint-Amant L; Drapeau P Methods Cell Sci; 2003; 25(1-2):59-64. PubMed ID: 14739588 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]