BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 1460869)

  • 1. Immunohistochemical and in situ hybridization studies of androgen receptor expression in a transplantable androgen-independent prostatic carcinoma line (AIT) of Noble rats.
    Leav I; Kwan PW; Merk FB; Chang C; Ho SM
    Lab Invest; 1992 Dec; 67(6):788-95. PubMed ID: 1460869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early alterations in ras protooncogene mRNA expression in testosterone and estradiol-17 beta induced prostatic dysplasia of noble rats.
    Yu M; Leav BA; Leav I; Merk FB; Wolfe HJ; Ho SM
    Lab Invest; 1993 Jan; 68(1):33-44. PubMed ID: 8423674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testosterone-mediated increase in 5 alpha-dihydrotestosterone content, nuclear androgen receptor levels, and cell division in an androgen-independent prostate carcinoma of Noble rats.
    Ho SM; Leav I; Damassa D; Kwan PW; Merk FB; Seto HS
    Cancer Res; 1988 Feb; 48(3):609-14. PubMed ID: 3257169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of canine basal cells in prostatic post natal development, induction of hyperplasia, sex hormone-stimulated growth; and the ductal origin of carcinoma.
    Leav I; Schelling KH; Adams JY; Merk FB; Alroy J
    Prostate; 2001 May; 47(3):149-63. PubMed ID: 11351344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of canine basal cells in postnatal prostatic development, induction of hyperplasia, and sex hormone-stimulated growth; and the ductal origin of carcinoma.
    Leav I; Schelling KH; Adams JY; Merk FB; Alroy J
    Prostate; 2001 Aug; 48(3):210-24. PubMed ID: 11494337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C19-radiosteroid disposition in organ cultures of transplanted prostatic adenocarcinomas of the Noble rat.
    Ofner P; Leav I; Boucher WS; Vena RL
    Cancer Res; 1987 Mar; 47(6):1701-5. PubMed ID: 3815367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional regulation of the androgen signaling pathway by the Wilms' tumor suppressor gene WT1.
    Zaia A; Fraizer GC; Piantanelli L; Saunders GF
    Anticancer Res; 2001; 21(1A):1-10. PubMed ID: 11299720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-independent activation of the androgen receptor by the differentiation agent butyrate in human prostate cancer cells.
    Sadar MD; Gleave ME
    Cancer Res; 2000 Oct; 60(20):5825-31. PubMed ID: 11059779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line.
    Tepper CG; Boucher DL; Ryan PE; Ma AH; Xia L; Lee LF; Pretlow TG; Kung HJ
    Cancer Res; 2002 Nov; 62(22):6606-14. PubMed ID: 12438256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA methylation in the androgen receptor gene promoter region in rat prostate cancers.
    Takahashi S; Inaguma S; Sakakibara M; Cho YM; Suzuki S; Ikeda Y; Cui L; Shirai T
    Prostate; 2002 Jun; 52(1):82-8. PubMed ID: 11992622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intratesticular androgen levels, androgen receptor localization, and androgen receptor expression in adult rat Sertoli cells.
    Hill CM; Anway MD; Zirkin BR; Brown TR
    Biol Reprod; 2004 Oct; 71(4):1348-58. PubMed ID: 15215201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hormonal regulation of beta2-adrenergic receptor level in prostate cancer.
    Ramberg H; Eide T; Krobert KA; Levy FO; Dizeyi N; Bjartell AS; Abrahamsson PA; Taskén KA
    Prostate; 2008 Jul; 68(10):1133-42. PubMed ID: 18454446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen.
    Gregory CW; Johnson RT; Mohler JL; French FS; Wilson EM
    Cancer Res; 2001 Apr; 61(7):2892-8. PubMed ID: 11306464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitogen-activated protein kinase and mitogen-activated kinase phosphatase-1 expression in the Noble rat model of sex hormone-induced prostatic dysplasia and carcinoma.
    Leav I; Galluzzi CM; Ziar J; Stork PJ; Ho SM; Loda M
    Lab Invest; 1996 Sep; 75(3):361-70. PubMed ID: 8804359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunostaining of the androgen receptor and sequence analysis of its DNA-binding domain in canine prostate cancer.
    Lai CL; van den Ham R; Mol J; Teske E
    Vet J; 2009 Sep; 181(3):256-60. PubMed ID: 18583166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Androgen independence of primary epithelial cultures of the prostate is associated with a down-regulation of androgen receptor gene expression.
    Grant ES; Batchelor KW; Habib FK
    Prostate; 1996 Dec; 29(6):339-49. PubMed ID: 8977630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of LNCaP prostate tumor growth in vivo by an antisense oligonucleotide directed against the human androgen receptor.
    Eder IE; Hoffmann J; Rogatsch H; Schäfer G; Zopf D; Bartsch G; Klocker H
    Cancer Gene Ther; 2002 Feb; 9(2):117-25. PubMed ID: 11857028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells.
    Gao J; Arnold JT; Isaacs JT
    Cancer Res; 2001 Jul; 61(13):5038-44. PubMed ID: 11431338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The TRPS1 transcription factor: androgenic regulation in prostate cancer and high expression in breast cancer.
    Chang GT; Jhamai M; van Weerden WM; Jenster G; Brinkmann AO
    Endocr Relat Cancer; 2004 Dec; 11(4):815-22. PubMed ID: 15613454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Androgen receptor level controlled by a suppressor complex lost in an androgen-independent prostate cancer cell line.
    Wang LG; Ossowski L; Ferrari AC
    Oncogene; 2004 Jul; 23(30):5175-84. PubMed ID: 15156193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.