These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 14609069)

  • 1. Microbubble-enhanced cavitation for noninvasive ultrasound surgery.
    Tran BC; Seo J; Hall TL; Fowlkes JB; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1296-304. PubMed ID: 14609069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of contrast agent infusion rates on thresholds for tissue damage produced by single exposures of high-intensity ultrasound.
    Tran BC; Seo J; Hall TL; Fowlkes JB; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1121-30. PubMed ID: 16212251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavitation threshold of microbubbles in gel tunnels by focused ultrasound.
    Sassaroli E; Hynynen K
    Ultrasound Med Biol; 2007 Oct; 33(10):1651-60. PubMed ID: 17590501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection.
    Chen X; Wang J; Pacella JJ; Villanueva FS
    Ultrasound Med Biol; 2016 Feb; 42(2):528-538. PubMed ID: 26603628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microbubble agent improves the therapeutic efficiency of high intensity focused ultrasound: a rabbit kidney study.
    Yu T; Wang G; Hu K; Ma P; Bai J; Wang Z
    Urol Res; 2004 Feb; 32(1):14-9. PubMed ID: 14655029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo acceleration of ultrasonic tissue heating by microbubble agent.
    Umemura S; Kawabata K; Sasaki K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1690-8. PubMed ID: 16382620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbubbles improve the ablation efficiency of extracorporeal high intensity focused ultrasound against kidney tissues.
    Yu T; Hu D; Xu C
    World J Urol; 2008 Dec; 26(6):631-6. PubMed ID: 18594828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-linear Acoustic Emissions from Therapeutically Driven Contrast Agent Microbubbles.
    Song JH; Moldovan A; Prentice P
    Ultrasound Med Biol; 2019 Aug; 45(8):2188-2204. PubMed ID: 31085030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining radiation force with cavitation for enhanced sonothrombolysis.
    Chuang YH; Cheng PW; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):97-104. PubMed ID: 23287916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of ultrasound contrast agent in high-intensity focused ultrasound ablation.
    Luo W; Zhou X; Tian X; Ren X; Zheng M; Gu K; He G
    Adv Ther; 2006; 23(6):861-8. PubMed ID: 17276954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced heat deposition using ultrasound contrast agent--modeling and experimental observations.
    Razansky D; Einziger PD; Adam DR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):137-47. PubMed ID: 16471440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of postexcitation thresholds for single ultrasound contrast agent microbubbles using double passive cavitation detection.
    King DA; Malloy MJ; Roberts AC; Haak A; Yoder CC; O'Brien WD
    J Acoust Soc Am; 2010 Jun; 127(6):3449-55. PubMed ID: 20550244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood flow occlusion via ultrasound image-guided high-intensity focused ultrasound and its effect on tissue perfusion.
    Ichihara M; Sasaki K; Umemura S; Kushima M; Okai T
    Ultrasound Med Biol; 2007 Mar; 33(3):452-9. PubMed ID: 17208351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbubble-enhanced hemorrhage control using high intensity focused ultrasound.
    Zderic V; Brayman AA; Sharar SR; Crum LA; Vaezy S
    Ultrasonics; 2006 Dec; 45(1-4):113-20. PubMed ID: 16949630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals.
    Ammi AY; Cleveland RO; Mamou J; Wang GI; Bridal SL; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):126-36. PubMed ID: 16471439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperecho as the indicator of tissue necrosis during microbubble-assisted high intensity focused ultrasound: sensitivity, specificity and predictive value.
    Yu T; Xu C
    Ultrasound Med Biol; 2008 Aug; 34(8):1343-7. PubMed ID: 18378378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of ultrasound tissue damage based on changes in image echogenicity in canine kidney.
    Seo J; Tran BC; Hall TL; Fowlkes JB; Abrams GD; O'Donnell M; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1111-20. PubMed ID: 16212250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical monitoring of ultrasound-induced bioeffects in glass catfish.
    Maruvada S; Hynynen K
    Ultrasound Med Biol; 2004 Jan; 30(1):67-74. PubMed ID: 14962610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimizing the thermal losses from perfusion during focused ultrasound exposures with flowing microbubbles.
    Zhang S; Ding T; Wan M; Jiang H; Yang X; Zhong H; Wang S
    J Acoust Soc Am; 2011 Apr; 129(4):2336-44. PubMed ID: 21476689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of high-intensity focused ultrasound on whole blood with and without microbubble contrast agent.
    Poliachik SL; Chandler WL; Mourad PD; Bailey MR; Bloch S; Cleveland RO; Kaczkowski P; Keilman G; Porter T; Crum LA
    Ultrasound Med Biol; 1999 Jul; 25(6):991-8. PubMed ID: 10461729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.