These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 14609074)

  • 1. A novel sensor for monitoring acoustic cavitation. Part I: Concept, theory, and prototype development.
    Zeqiri B; Gélat PN; Hodnett M; Lee ND
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1342-50. PubMed ID: 14609074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel sensor for monitoring acoustic cavitation. Part II: Prototype performance evaluation.
    Zeqiri B; Lee ND; Hodnett M; Gélat PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1351-62. PubMed ID: 14609075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels.
    Zeqiri B; Hodnett M; Carroll AJ
    Ultrasonics; 2006 Jan; 44(1):73-82. PubMed ID: 16213538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency acoustic emissions generated by a 20 kHz sonochemical horn processor detected using a novel broadband acoustic sensor: a preliminary study.
    Hodnett M; Chow R; Zeqiri B
    Ultrason Sonochem; 2004 Sep; 11(6):441-54. PubMed ID: 15302033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect on High-Intensity Fields of a Tough Hydrophone With Hydrothermal PZT Thick-Film Vibrator and Titanium Front Layer.
    Okada N; Takeuchi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1120-1126. PubMed ID: 28436860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An objective comparison of commercially-available cavitation meters.
    Sarno D; Hodnett M; Wang L; Zeqiri B
    Ultrason Sonochem; 2017 Jan; 34():354-364. PubMed ID: 27773256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy.
    Pouliopoulos AN; Bonaccorsi S; Choi JJ
    Phys Med Biol; 2014 Nov; 59(22):6941-57. PubMed ID: 25350470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous measurements of acoustic emission and sonochemical luminescence for monitoring ultrasonic cavitation.
    Kwon O; Pahk KJ; Choi MJ
    J Acoust Soc Am; 2021 Jun; 149(6):4477. PubMed ID: 34241435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ultrasound pulse parameters on cavitation properties of flowing microbubbles under physiologically relevant conditions.
    Cheng M; Li F; Han T; Yu ACH; Qin P
    Ultrason Sonochem; 2019 Apr; 52():512-521. PubMed ID: 30642801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a reference ultrasonic cavitation vessel: Part 2--investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field.
    Hodnett M; Zeqiri B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1809-22. PubMed ID: 18986923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide bandwidth dual-frequency ultrasound measurements based on fiber laser sensing technology.
    Lyu C; Liu Y; Wu C
    Appl Opt; 2016 Jul; 55(19):5057-62. PubMed ID: 27409190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual frequency cavitation event sensor with iodide dosimeter.
    Ebrahiminia A; Mokhtari-Dizaji M; Toliyat T
    Ultrason Sonochem; 2016 Jan; 28():276-282. PubMed ID: 26384909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A liquid level sensor using the absorption of guided acoustic waves.
    Royer D; Levin L; Legras O
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):418-21. PubMed ID: 18263200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance characterisation of a passive cavitation detector optimised for subharmonic periodic shock waves from acoustic cavitation in MHz and sub-MHz ultrasound.
    Johansen K; Song JH; Prentice P
    Ultrason Sonochem; 2018 May; 43():146-155. PubMed ID: 29555269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: II. Systematic Investigation in an Agar Material.
    Haller J; Wilkens V
    Ultrasound Med Biol; 2018 Feb; 44(2):397-415. PubMed ID: 29195755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement and control of acoustic cavitation yield by low-level dual frequency sonication: a subharmonic analysis.
    Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM; Nilchiani V; Goudarzi H
    Ultrason Sonochem; 2011 Jan; 18(1):394-400. PubMed ID: 20678953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of pressure and assessment of cavitation for a 22.5-kHz intra-arterial angioplasty device.
    Makin IR; Everbach EC
    J Acoust Soc Am; 1996 Sep; 100(3):1855-64. PubMed ID: 8817908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic cavitation monitoring by acoustic noise power measurement.
    Frohly J; Labouret S; Bruneel C; Looten-Baquet I; Torguet R
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2012-20. PubMed ID: 11108340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy.
    Schad KC; Hynynen K
    Phys Med Biol; 2010 Sep; 55(17):4933-47. PubMed ID: 20693614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.