BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 14609326)

  • 1. Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina.
    Rothery EL; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2003 Nov; 42(45):13160-9. PubMed ID: 14609326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the active site acid/base catalyst in a bacterial fumarate reductase: a kinetic and crystallographic study.
    Doherty MK; Pealing SL; Miles CS; Moysey R; Taylor P; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2000 Sep; 39(35):10695-701. PubMed ID: 10978153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing domain mobility in a flavocytochrome.
    Rothery EL; Mowat CG; Miles CS; Mott S; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2004 May; 43(17):4983-9. PubMed ID: 15109257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of His505 in the soluble fumarate reductase from Shewanella frigidimarina.
    Pankhurst KL; Mowat CG; Miles CS; Leys D; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2002 Jul; 41(27):8551-6. PubMed ID: 12093271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and crystallographic analysis of the key active site acid/base arginine in a soluble fumarate reductase.
    Mowat CG; Moysey R; Miles CS; Leys D; Doherty MK; Taylor P; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2001 Oct; 40(41):12292-8. PubMed ID: 11591148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA; Dhawan IK; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Apr; 400(1):63-75. PubMed ID: 11913972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and mechanistic mapping of a unique fumarate reductase.
    Taylor P; Pealing SL; Reid GA; Chapman SK; Walkinshaw MD
    Nat Struct Biol; 1999 Dec; 6(12):1108-12. PubMed ID: 10581550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open conformation of a flavocytochrome c3 fumarate reductase.
    Bamford V; Dobbin PS; Richardson DJ; Hemmings AM
    Nat Struct Biol; 1999 Dec; 6(12):1104-7. PubMed ID: 10581549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox behaviour of the haem domain of flavocytochrome c3 from Shewanella frigidimarina probed by NMR.
    Pessanha M; Rothery EL; Louro RO; Turner DL; Miles CS; Reid GA; Chapman SK; Xavier AV; Salgueiro CA
    FEBS Lett; 2004 Dec; 578(1-2):185-90. PubMed ID: 15581639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of a soluble fumarate reductase from Shewanella frigidimarina: a theoretical study.
    Lucas MF; Ramos MJ
    J Phys Chem B; 2006 Jun; 110(21):10550-6. PubMed ID: 16722766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox properties of flavocytochrome c3 from Shewanella frigidimarina NCIMB400.
    Turner KL; Doherty MK; Heering HA; Armstrong FA; Reid GA; Chapman SK
    Biochemistry; 1999 Mar; 38(11):3302-9. PubMed ID: 10079073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proton delivery pathway in the soluble fumarate reductase from Shewanella frigidimarina.
    Pankhurst KL; Mowat CG; Rothery EL; Hudson JM; Jones AK; Miles CS; Walkinshaw MD; Armstrong FA; Reid GA; Chapman SK
    J Biol Chem; 2006 Jul; 281(29):20589-97. PubMed ID: 16699170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization and preliminary X-ray analysis of flavocytochrome c(3), the fumarate reductase from Shewanella frigidimarina.
    Pealing SL; Lysek DA; Taylor P; Alexeev D; Reid GA; Chapman SK; Walkinshaw MD
    J Struct Biol; 1999 Aug; 127(1):76-8. PubMed ID: 10479620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain swing upon His to Ala mutation in nitrite reductase of Pseudomonas aeruginosa.
    Brown K; Roig-Zamboni V; Cutruzzola' F; Arese M; Sun W; Brunori M; Cambillau C; Tegoni M
    J Mol Biol; 2001 Sep; 312(3):541-54. PubMed ID: 11563915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning of functional heme reduction potentials in Shewanella fumarate reductases.
    Pessanha M; Rothery EL; Miles CS; Reid GA; Chapman SK; Louro RO; Turner DL; Salgueiro CA; Xavier AV
    Biochim Biophys Acta; 2009 Feb; 1787(2):113-20. PubMed ID: 19081388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic coupling between heme electron-transfer centers and its decay with distance depends strongly on relative orientation.
    Smith DM; Rosso KM; Dupuis M; Valiev M; Straatsma TP
    J Phys Chem B; 2006 Aug; 110(31):15582-8. PubMed ID: 16884282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-transfer mechanisms through biological redox chains in multicenter enzymes.
    Jeuken LJ; Jones AK; Chapman SK; Cecchini G; Armstrong FA
    J Am Chem Soc; 2002 May; 124(20):5702-13. PubMed ID: 12010043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.