BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 14609336)

  • 21. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM
    J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gamma-secretase activity is present in rafts but is not cholesterol-dependent.
    Wada S; Morishima-Kawashima M; Qi Y; Misono H; Shimada Y; Ohno-Iwashita Y; Ihara Y
    Biochemistry; 2003 Dec; 42(47):13977-86. PubMed ID: 14636066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition.
    Niu SL; Litman BJ
    Biophys J; 2002 Dec; 83(6):3408-15. PubMed ID: 12496107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relative activity of cholesterol in OPPC/cholesterol/sphingomyelin mixtures measured with an acoustic sensor.
    Melzak KA; Gizeli E
    Analyst; 2009 Mar; 134(3):609-14. PubMed ID: 19238301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. P-Glycoprotein is localized in intermediate-density membrane microdomains distinct from classical lipid rafts and caveolar domains.
    Radeva G; Perabo J; Sharom FJ
    FEBS J; 2005 Oct; 272(19):4924-37. PubMed ID: 16176266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding of NAP-22, a calmodulin-binding neuronal protein, to raft-like domains in model membranes.
    Khan TK; Yang B; Thompson NL; Maekawa S; Epand RM; Jacobson K
    Biochemistry; 2003 May; 42(17):4780-6. PubMed ID: 12718518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of pH on the pore forming activity and conformational stability of ostreolysin, a lipid raft-binding protein from the edible mushroom Pleurotus ostreatus.
    Berne S; Sepcić K; Anderluh G; Turk T; Macek P; Poklar Ulrih N
    Biochemistry; 2005 Aug; 44(33):11137-47. PubMed ID: 16101298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein mediated glycolipid transfer is inhibited FROM sphingomyelin membranes but enhanced TO sphingomyelin containing raft like membranes.
    Nylund M; Mattjus P
    Biochim Biophys Acta; 2005 May; 1669(2):87-94. PubMed ID: 15893510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and cholesterol dynamics of caveolae/raft and nonraft plasma membrane domains.
    Gallegos AM; Storey SM; Kier AB; Schroeder F; Ball JM
    Biochemistry; 2006 Oct; 45(39):12100-16. PubMed ID: 17002310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an assay for the intermembrane transfer of cholesterol by Niemann-Pick C2 protein.
    Babalola JO; Wendeler M; Breiden B; Arenz C; Schwarzmann G; Locatelli-Hoops S; Sandhoff K
    Biol Chem; 2007 Jun; 388(6):617-26. PubMed ID: 17552909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two types of detergent-insoluble, glycosphingolipid/cholesterol-rich membrane domains from isolated myelin.
    Arvanitis DN; Min W; Gong Y; Heng YM; Boggs JM
    J Neurochem; 2005 Sep; 94(6):1696-710. PubMed ID: 16045452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of interaction of PITPalpha with membranes: conformational changes in the C-terminus associated with membrane binding.
    Tremblay JM; Unruh JR; Johnson CK; Yarbrough LR
    Arch Biochem Biophys; 2005 Dec; 444(2):112-20. PubMed ID: 16309627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A lipid matrix model of membrane raft structure.
    Quinn PJ
    Prog Lipid Res; 2010 Oct; 49(4):390-406. PubMed ID: 20478335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions of Triton X-100 with sphingomyelin and phosphatidylcholine monolayers: influence of the cholesterol content.
    Abi-Rizk G; Besson F
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):163-7. PubMed ID: 18644701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The characterization of plasma membrane Ca2+-ATPase in rich sphingomyelin-cholesterol domains.
    Pang Y; Zhu H; Wu P; Chen J
    FEBS Lett; 2005 Apr; 579(11):2397-403. PubMed ID: 15848178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sterol carrier protein-2 functions in phosphatidylinositol transfer and signaling.
    Schroeder F; Zhou M; Swaggerty CL; Atshaves BP; Petrescu AD; Storey SM; Martin GG; Huang H; Helmkamp GM; Ball JM
    Biochemistry; 2003 Mar; 42(11):3189-202. PubMed ID: 12641450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of methyl-beta-cyclodextrin on T lymphocytes lipid rafts with aging.
    Larbi A; Douziech N; Khalil A; Dupuis G; Gheraïri S; Guérard KP; Fülöp T
    Exp Gerontol; 2004 Apr; 39(4):551-8. PubMed ID: 15050290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains.
    Anderson RG; Jacobson K
    Science; 2002 Jun; 296(5574):1821-5. PubMed ID: 12052946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fas signaling induces raft coalescence that is blocked by cholesterol depletion in human RPE cells undergoing apoptosis.
    Lincoln JE; Boling M; Parikh AN; Yeh Y; Gilchrist DG; Morse LS
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2172-8. PubMed ID: 16639029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.