These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 14609507)

  • 1. Responses of bronchial C-fiber afferents of the rabbit to changes in lung compliance.
    Ma A; Bravo M; Kappagoda CT
    Respir Physiol Neurobiol; 2003 Nov; 138(2-3):155-63. PubMed ID: 14609507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapidly adapting receptor activity in dogs is inversely related to lung compliance.
    Jonzon A; Pisarri TE; Coleridge JC; Coleridge HM
    J Appl Physiol (1985); 1986 Nov; 61(5):1980-7. PubMed ID: 3536840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of slowly adapting pulmonary stretch receptors to reduced lung compliance.
    Yu J; Pisarri TE; Coleridge JC; Coleridge HM
    J Appl Physiol (1985); 1991 Aug; 71(2):425-31. PubMed ID: 1938713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulmonary rapidly adapting receptors reflexly increase airway secretion in dogs.
    Yu J; Schultz HD; Goodman J; Coleridge JC; Coleridge HM; Davis B
    J Appl Physiol (1985); 1989 Aug; 67(2):682-7. PubMed ID: 2793670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of vagal lung afferents with inhalation of histamine aerosol in anesthetized dogs.
    Schelegle ES; Mansoor JK; Green JF
    Lung; 2000; 178(1):41-52. PubMed ID: 10723719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of lung stiffness on rapidly adapting receptors in rabbits and cats.
    Yu J; Coleridge JC; Coleridge HM
    Respir Physiol; 1987 May; 68(2):161-76. PubMed ID: 3299570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced activation of immunomodulatory transcription factors during positive end-expiratory pressure adjustment based on volume-dependent compliance in isolated perfused rabbit lungs.
    Kirchner EA; Mols G; Hermle G; Muehlschlegel JD; Geiger KK; Guttmann J; Pahl HL
    Br J Anaesth; 2005 Apr; 94(4):530-5. PubMed ID: 15665073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of C fiber afferents of the rabbit airways and lungs to changes in extra-vascular fluid volume.
    Gunawardena S; Ravi K; Longhurst JC; Kaufman MP; Ma A; Bravo M; Kappagoda CT
    Respir Physiol Neurobiol; 2002 Sep; 132(3):239-51. PubMed ID: 12208083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the thromboxane A2 mimetic, U46,619, on pulmonary vagal afferents in the cat.
    Karla W; Shams H; Orr JA; Scheid P
    Respir Physiol; 1992 Mar; 87(3):383-96. PubMed ID: 1604060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing tidal volumes and pulmonary overdistention adversely affect pulmonary vascular mechanics and cardiac output in a pediatric swine model.
    Cheifetz IM; Craig DM; Quick G; McGovern JJ; Cannon ML; Ungerleider RM; Smith PK; Meliones JN
    Crit Care Med; 1998 Apr; 26(4):710-6. PubMed ID: 9559609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained inflations improve respiratory compliance during high-frequency oscillatory ventilation but not during large tidal volume positive-pressure ventilation in rabbits.
    Bond DM; McAloon J; Froese AB
    Crit Care Med; 1994 Aug; 22(8):1269-77. PubMed ID: 8045147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses to inflation of vagal afferents with endings in the lung of dogs.
    Kaufman MP; Iwamoto GA; Ashton JH; Cassidy SS
    Circ Res; 1982 Oct; 51(4):525-31. PubMed ID: 7127686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling rapidly adapting pulmonary stretch receptor activity to step-wise and constant pressure inflation of the lungs.
    Bergren DR
    Respir Physiol Neurobiol; 2020 May; 276():103410. PubMed ID: 32036031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of lung stretch depressor reflex to nonlinear fall in cardiac output during PEEP.
    Schreuder JJ; Jansen JR; Versprille A
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jun; 56(6):1578-82. PubMed ID: 6376437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of potassium channel blockers on hyperinflation-induced rapidly adapting pulmonary stretch receptor stimulation in the rabbit.
    Matsumoto S; Yoshida S; Ikeda M; Nishikawa T; Saiki C; Takeda M
    Life Sci; 2001 Dec; 70(5):491-501. PubMed ID: 11811894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lung aeration during ventilation after recruitment guided by tidal elimination of carbon dioxide and dynamic compliance was better than after end-tidal carbon dioxide targeted ventilation: a computed tomography study in surfactant-depleted piglets.
    Hanson A; Göthberg S; Nilsson K; Hedenstierna G
    Pediatr Crit Care Med; 2011 Nov; 12(6):e362-8. PubMed ID: 21263364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paradoxical response of pulmonary slowly adapting units during constant pressure lung inflation.
    Yu J
    Am J Physiol Regul Integr Comp Physiol; 2021 Aug; 321(2):R220-R227. PubMed ID: 34189947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of pulmonary rapidly adapting receptors does not induce bronchoconstriction in dogs.
    Yu J; Mink S
    J Appl Physiol (1985); 1996 Jan; 80(1):233-9. PubMed ID: 8847308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lung mechanics and activity of slowly adapting airway stretch receptors.
    Sant'Ambrogio FB; Sant'Ambrogio G; Fisher JT
    Eur Respir J; 1988 Aug; 1(8):685-90. PubMed ID: 3234517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A decremental PEEP trial for determining open-lung PEEP in a rabbit model of acute lung injury.
    Hua YM; Lien SH; Liu TY; Lee CM; Yuh YS
    Pediatr Pulmonol; 2008 Apr; 43(4):371-80. PubMed ID: 18293413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.