These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 14609658)
1. Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries. Thali MJ; Braun M; Dirnhofer R Forensic Sci Int; 2003 Nov; 137(2-3):203-8. PubMed ID: 14609658 [TBL] [Abstract][Full Text] [Related]
2. VIRTOPSY--scientific documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning. Thali MJ; Braun M; Buck U; Aghayev E; Jackowski C; Vock P; Sonnenschein M; Dirnhofer R J Forensic Sci; 2005 Mar; 50(2):428-42. PubMed ID: 15813556 [TBL] [Abstract][Full Text] [Related]
3. Analysis of patterned injuries and injury-causing instruments with forensic 3D/CAD supported photogrammetry (FPHG): an instruction manual for the documentation process. Brüschweiler W; Braun M; Dirnhofer R; Thali MJ Forensic Sci Int; 2003 Mar; 132(2):130-8. PubMed ID: 12711193 [TBL] [Abstract][Full Text] [Related]
4. Documentation and analysis of traumatic injuries in clinical forensic medicine involving structured light three-dimensional surface scanning versus photography. Shamata A; Thompson T J Forensic Leg Med; 2018 Aug; 58():93-100. PubMed ID: 29777982 [TBL] [Abstract][Full Text] [Related]
5. The virtual approach to the assessment of skeletal injuries in human skeletal remains of forensic importance. Urbanová P; Ross AH; Jurda M; Šplíchalová I J Forensic Leg Med; 2017 Jul; 49():59-75. PubMed ID: 28586732 [TBL] [Abstract][Full Text] [Related]
6. Using virtual reality for forensic examinations of injuries. Koller S; Ebert LC; Martinez RM; Sieberth T Forensic Sci Int; 2019 Feb; 295():30-35. PubMed ID: 30554020 [TBL] [Abstract][Full Text] [Related]
7. Determining the Effectiveness of Noncontact Three-Dimensional Surface Scanning for the Assessment of Open Injuries. Shamata A; Thompson T J Forensic Sci; 2020 Mar; 65(2):627-635. PubMed ID: 31577378 [TBL] [Abstract][Full Text] [Related]
8. 'Morphological imprint': determination of the injury-causing weapon from the wound morphology using forensic 3D/CAD-supported photogrammetry. Thali MJ; Braun M; Brueschweiler W; Dirnhofer R Forensic Sci Int; 2003 Apr; 132(3):177-81. PubMed ID: 12711202 [TBL] [Abstract][Full Text] [Related]
9. The Accuracy and Applicability of 3D Modeling and Printing Blunt Force Cranial Injuries. Edwards J; Rogers T J Forensic Sci; 2018 May; 63(3):683-691. PubMed ID: 28834542 [TBL] [Abstract][Full Text] [Related]
10. 3D surface and body documentation in forensic medicine: 3-D/CAD Photogrammetry merged with 3D radiological scanning. Thali MJ; Braun M; Wirth J; Vock P; Dirnhofer R J Forensic Sci; 2003 Nov; 48(6):1356-65. PubMed ID: 14640285 [TBL] [Abstract][Full Text] [Related]
11. Comparison of forensic photo-documentation to a photogrammetric solution using the multi-camera system "Botscan". Michienzi R; Meier S; Ebert LC; Martinez RM; Sieberth T Forensic Sci Int; 2018 Jul; 288():46-52. PubMed ID: 29715622 [TBL] [Abstract][Full Text] [Related]
12. Clinical forensic height measurements on injured people using a multi camera device for 3D documentation. Sieberth T; Ebert LC; Gentile S; Fliss B Forensic Sci Med Pathol; 2020 Dec; 16(4):586-594. PubMed ID: 32656642 [TBL] [Abstract][Full Text] [Related]
13. Forensic microradiology: micro-computed tomography (Micro-CT) and analysis of patterned injuries inside of bone. Thali MJ; Taubenreuther U; Karolczak M; Braun M; Brueschweiler W; Kalender WA; Dirnhofer R J Forensic Sci; 2003 Nov; 48(6):1336-42. PubMed ID: 14640282 [TBL] [Abstract][Full Text] [Related]
14. Haptics in forensics: the possibilities and advantages in using the haptic device for reconstruction approaches in forensic science. Buck U; Naether S; Braun M; Thali M Forensic Sci Int; 2008 Sep; 180(2-3):86-92. PubMed ID: 18768272 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of contactless 3D optical measurement for the analysis of bone and soft tissue lesions: new technologies and perspectives in forensic sciences. Sansoni G; Cattaneo C; Trebeschi M; Gibelli D; Porta D; Picozzi M J Forensic Sci; 2009 May; 54(3):540-5. PubMed ID: 19368623 [TBL] [Abstract][Full Text] [Related]
16. Multi-camera system for 3D forensic documentation. Leipner A; Baumeister R; Thali MJ; Braun M; Dobler E; Ebert LC Forensic Sci Int; 2016 Apr; 261():123-8. PubMed ID: 26921815 [TBL] [Abstract][Full Text] [Related]
17. Image-guided virtual autopsy findings of gunshot victims performed with multi-slice computed tomography and magnetic resonance imaging and subsequent correlation between radiology and autopsy findings. Thali MJ; Yen K; Vock P; Ozdoba C; Kneubuehl BP; Sonnenschein M; Dirnhofer R Forensic Sci Int; 2003 Dec; 138(1-3):8-16. PubMed ID: 14642714 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of 3D surface scanners for skin documentation in forensic medicine: comparison of benchmark surfaces. Schweitzer W; Häusler M; Bär W; Schaepman M BMC Med Imaging; 2007 Jan; 7():1. PubMed ID: 17266746 [TBL] [Abstract][Full Text] [Related]
19. Virtual image grafting: image based generation and visualization of virtual skin defects. Oppenheimer P; Berkley J; Weghorst S; Berg D Stud Health Technol Inform; 2002; 85():321-7. PubMed ID: 15458109 [TBL] [Abstract][Full Text] [Related]