BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 14609658)

  • 1. Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries.
    Thali MJ; Braun M; Dirnhofer R
    Forensic Sci Int; 2003 Nov; 137(2-3):203-8. PubMed ID: 14609658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VIRTOPSY--scientific documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning.
    Thali MJ; Braun M; Buck U; Aghayev E; Jackowski C; Vock P; Sonnenschein M; Dirnhofer R
    J Forensic Sci; 2005 Mar; 50(2):428-42. PubMed ID: 15813556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of patterned injuries and injury-causing instruments with forensic 3D/CAD supported photogrammetry (FPHG): an instruction manual for the documentation process.
    Brüschweiler W; Braun M; Dirnhofer R; Thali MJ
    Forensic Sci Int; 2003 Mar; 132(2):130-8. PubMed ID: 12711193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Documentation and analysis of traumatic injuries in clinical forensic medicine involving structured light three-dimensional surface scanning versus photography.
    Shamata A; Thompson T
    J Forensic Leg Med; 2018 Aug; 58():93-100. PubMed ID: 29777982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The virtual approach to the assessment of skeletal injuries in human skeletal remains of forensic importance.
    Urbanová P; Ross AH; Jurda M; Šplíchalová I
    J Forensic Leg Med; 2017 Jul; 49():59-75. PubMed ID: 28586732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using virtual reality for forensic examinations of injuries.
    Koller S; Ebert LC; Martinez RM; Sieberth T
    Forensic Sci Int; 2019 Feb; 295():30-35. PubMed ID: 30554020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the Effectiveness of Noncontact Three-Dimensional Surface Scanning for the Assessment of Open Injuries.
    Shamata A; Thompson T
    J Forensic Sci; 2020 Mar; 65(2):627-635. PubMed ID: 31577378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Morphological imprint': determination of the injury-causing weapon from the wound morphology using forensic 3D/CAD-supported photogrammetry.
    Thali MJ; Braun M; Brueschweiler W; Dirnhofer R
    Forensic Sci Int; 2003 Apr; 132(3):177-81. PubMed ID: 12711202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Accuracy and Applicability of 3D Modeling and Printing Blunt Force Cranial Injuries.
    Edwards J; Rogers T
    J Forensic Sci; 2018 May; 63(3):683-691. PubMed ID: 28834542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D surface and body documentation in forensic medicine: 3-D/CAD Photogrammetry merged with 3D radiological scanning.
    Thali MJ; Braun M; Wirth J; Vock P; Dirnhofer R
    J Forensic Sci; 2003 Nov; 48(6):1356-65. PubMed ID: 14640285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of forensic photo-documentation to a photogrammetric solution using the multi-camera system "Botscan".
    Michienzi R; Meier S; Ebert LC; Martinez RM; Sieberth T
    Forensic Sci Int; 2018 Jul; 288():46-52. PubMed ID: 29715622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical forensic height measurements on injured people using a multi camera device for 3D documentation.
    Sieberth T; Ebert LC; Gentile S; Fliss B
    Forensic Sci Med Pathol; 2020 Dec; 16(4):586-594. PubMed ID: 32656642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forensic microradiology: micro-computed tomography (Micro-CT) and analysis of patterned injuries inside of bone.
    Thali MJ; Taubenreuther U; Karolczak M; Braun M; Brueschweiler W; Kalender WA; Dirnhofer R
    J Forensic Sci; 2003 Nov; 48(6):1336-42. PubMed ID: 14640282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptics in forensics: the possibilities and advantages in using the haptic device for reconstruction approaches in forensic science.
    Buck U; Naether S; Braun M; Thali M
    Forensic Sci Int; 2008 Sep; 180(2-3):86-92. PubMed ID: 18768272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of contactless 3D optical measurement for the analysis of bone and soft tissue lesions: new technologies and perspectives in forensic sciences.
    Sansoni G; Cattaneo C; Trebeschi M; Gibelli D; Porta D; Picozzi M
    J Forensic Sci; 2009 May; 54(3):540-5. PubMed ID: 19368623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-camera system for 3D forensic documentation.
    Leipner A; Baumeister R; Thali MJ; Braun M; Dobler E; Ebert LC
    Forensic Sci Int; 2016 Apr; 261():123-8. PubMed ID: 26921815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-guided virtual autopsy findings of gunshot victims performed with multi-slice computed tomography and magnetic resonance imaging and subsequent correlation between radiology and autopsy findings.
    Thali MJ; Yen K; Vock P; Ozdoba C; Kneubuehl BP; Sonnenschein M; Dirnhofer R
    Forensic Sci Int; 2003 Dec; 138(1-3):8-16. PubMed ID: 14642714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of 3D surface scanners for skin documentation in forensic medicine: comparison of benchmark surfaces.
    Schweitzer W; Häusler M; Bär W; Schaepman M
    BMC Med Imaging; 2007 Jan; 7():1. PubMed ID: 17266746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual image grafting: image based generation and visualization of virtual skin defects.
    Oppenheimer P; Berkley J; Weghorst S; Berg D
    Stud Health Technol Inform; 2002; 85():321-7. PubMed ID: 15458109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology.
    Urbanová P; Hejna P; Jurda M
    Forensic Sci Int; 2015 May; 250():77-86. PubMed ID: 25818581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.