These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 14609665)

  • 21. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.
    Race A; Miller MA; Mann KA
    J Biomech; 2008 Oct; 41(14):3017-23. PubMed ID: 18774136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of interface conditions between ultrahigh molecular weight polyethylene and polymethyl methacrylate bone cement on the mechanical behaviour of total shoulder arthroplasty.
    Oosterom R; van Ostayen RA; Antonelli V; Bersee HE
    Proc Inst Mech Eng H; 2005 Nov; 219(6):425-35. PubMed ID: 16312102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prevention of mesh-dependent damage growth in finite element simulations of crack formation in acrylic bone cement.
    Stolk J; Verdonschot N; Mann KA; Huiskes R
    J Biomech; 2003 Jun; 36(6):861-71. PubMed ID: 12742454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasonic characterization of the mechanical properties and polymerization reaction of acrylic-based bone cements.
    Dunne NJ; Xu Y; Makem J; Orr I
    Proc Inst Mech Eng H; 2007 Apr; 221(3):251-61. PubMed ID: 17539581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shrinkage stresses in bone cement.
    Orr JF; Dunne NJ; Quinn JC
    Biomaterials; 2003 Aug; 24(17):2933-40. PubMed ID: 12742733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of the optimum loading of an antibiotic powder in an acrylic bone cement: gentamicin sulfate in SmartSet HV.
    Lewis G; Janna S
    Acta Orthop; 2006 Aug; 77(4):622-7. PubMed ID: 16929440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.
    Waanders D; Janssen D; Mann KA; Verdonschot N
    J Biomech; 2010 Nov; 43(15):3028-34. PubMed ID: 20692663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Propagation of fatigue cracks in acrylic bone cements containing different radiopaque agents.
    Manero JM; Ginebra MP; Gil FJ; Planell JA; Delgado JA; Morejon L; Artola A; Gurruchaga M; Goñi I
    Proc Inst Mech Eng H; 2004; 218(3):167-72. PubMed ID: 15239567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of barium concentration on the radiopacity and biomechanics of bone cement: experimental study.
    Makita M; Yamakado K; Nakatsuka A; Takaki H; Inaba T; Oshima F; Katayama H; Takeda K
    Radiat Med; 2008 Nov; 26(9):533-8. PubMed ID: 19030961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Examination of ceramic restorative material interfacial debonding using acoustic emission and optical coherence tomography.
    Lin CL; Kuo WC; Yu JJ; Huang SF
    Dent Mater; 2013 Apr; 29(4):382-8. PubMed ID: 23337286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The relationship between stress, porosity, and nonlinear damage accumulation in acrylic bone cement.
    Murphy BP; Prendergast PJ
    J Biomed Mater Res; 2002 Mar; 59(4):646-54. PubMed ID: 11774326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Examination of rotational fixation of the femoral component in total hip arthroplasty. A mechanical study of micromovement and acoustic emission.
    Sugiyama H; Whiteside LA; Kaiser AD
    Clin Orthop Relat Res; 1989 Dec; (249):122-8. PubMed ID: 2582663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [A new method to optimize the adhesion between bone cement and acetabular bone in total hip arthroplasty].
    Wirtz DC; Lelgemann B; Jungwirth F; Niethard FU; Marx R
    Z Orthop Ihre Grenzgeb; 2003; 141(2):209-16. PubMed ID: 12695959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microtomography assessment of failure in acrylic bone cement.
    Sinnett-Jones PE; Browne M; Ludwig W; Buffière JY; Sinclair I
    Biomaterials; 2005 Nov; 26(33):6460-6. PubMed ID: 15967499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flow characteristics of curing polymethyl methacrylate bone cement.
    Dunne NJ; Orr JF
    Proc Inst Mech Eng H; 1998; 212(3):199-207. PubMed ID: 9695639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microdamage accumulation in the cement layer of hip replacements under flexural loading.
    McCormack BA; Prendergast PJ
    J Biomech; 1999 May; 32(5):467-75. PubMed ID: 10327000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance of bioactive PMMA-based bone cement under load-bearing conditions: an in vivo evaluation and FE simulation.
    Fottner A; Nies B; Kitanovic D; Steinbrück A; Mayer-Wagner S; Schröder C; Heinemann S; Pohl U; Jansson V
    J Mater Sci Mater Med; 2016 Sep; 27(9):138. PubMed ID: 27530301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.