These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 14609669)

  • 1. Stabilisation of cables of fibronectin with micromolar concentrations of copper: in vitro cell substrate properties.
    Ahmed Z; Briden A; Hall S; Brown RA
    Biomaterials; 2004 Feb; 25(5):803-12. PubMed ID: 14609669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nerve guide material made from fibronectin: assessment of in vitro properties.
    Ahmed Z; Underwood S; Brown RA
    Tissue Eng; 2003 Apr; 9(2):219-31. PubMed ID: 12740085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of fibronectin mats with micromolar concentrations of copper.
    Ahmed Z; Idowu BD; Brown RA
    Biomaterials; 1999 Feb; 20(3):201-9. PubMed ID: 10030596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid shear in viscous fibronectin gels allows aggregation of fibrous materials for CNS tissue engineering.
    Phillips JB; King VR; Ward Z; Porter RA; Priestley JV; Brown RA
    Biomaterials; 2004 Jun; 25(14):2769-79. PubMed ID: 14962555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low concentrations of fibrinogen increase cell migration speed on fibronectin/fibrinogen composite cables.
    Ahmed Z; Underwood S; Brown RA
    Cell Motil Cytoskeleton; 2000 May; 46(1):6-16. PubMed ID: 10842329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion, alignment, and migration of cultured Schwann cells on ultrathin fibronectin fibres.
    Ahmed Z; Brown RA
    Cell Motil Cytoskeleton; 1999; 42(4):331-43. PubMed ID: 10223638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering.
    Bettinger CJ; Bruggeman JP; Misra A; Borenstein JT; Langer R
    Biomaterials; 2009 Jun; 30(17):3050-7. PubMed ID: 19286252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Schwann cell adhesion in response to shear stress in an in vitro model for peripheral nerve tissue engineering.
    Chafik D; Bear D; Bui P; Patel A; Jones NF; Kim BT; Hung CT; Gupta R
    Tissue Eng; 2003 Apr; 9(2):233-41. PubMed ID: 12740086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.
    Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S
    Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative physico-chemical and in vitro properties of fibrillated collagen scaffolds from different sources.
    Shanmugasundaram N; Ravikumar T; Babu M
    J Biomater Appl; 2004 Apr; 18(4):247-64. PubMed ID: 15070513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adhesion and proliferation of human Schwann cells on adhesive coatings.
    Vleggeert-Lankamp CL; Pêgo AP; Lakke EA; Deenen M; Marani E; Thomeer RT
    Biomaterials; 2004 Jun; 25(14):2741-51. PubMed ID: 14962553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological evaluation of collagen-chitosan scaffolds for dermis tissue engineering.
    Sun LP; Wang S; Zhang ZW; Wang XY; Zhang QQ
    Biomed Mater; 2009 Oct; 4(5):055008. PubMed ID: 19779250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of substrate stiffness on the behavior and functions of Schwann cells in culture.
    Gu Y; Ji Y; Zhao Y; Liu Y; Ding F; Gu X; Yang Y
    Biomaterials; 2012 Oct; 33(28):6672-81. PubMed ID: 22738780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [AN EXPERIMENTAL STUDY ON REPAIR OF SCIATIC NERVE INJURY BY Schwann-LIKE CELLS DERIVED FROM UMBILICAL CORD BLOOD MESENCHYMAL STEM CELLS].
    Wang X; Wang S; Xiao Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Feb; 29(2):213-20. PubMed ID: 26455153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro.
    Yang Y; Chen X; Ding F; Zhang P; Liu J; Gu X
    Biomaterials; 2007 Mar; 28(9):1643-52. PubMed ID: 17188747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair.
    Novikova LN; Pettersson J; Brohlin M; Wiberg M; Novikov LN
    Biomaterials; 2008 Mar; 29(9):1198-206. PubMed ID: 18083223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibronectin-tethered graphene oxide as an artificial matrix for osteogenesis.
    Subbiah R; Du P; Van SY; Suhaeri M; Hwang MP; Lee K; Park K
    Biomed Mater; 2014 Oct; 9(6):065003. PubMed ID: 25329544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of axons, Schwann cells and perineurial cells in nerve regeneration within transplanted nerve grafts: effects of anti-laminin and anti-fibronectin antisera.
    Wang GY; Hirai K; Shimada H; Taji S; Zhong SZ
    Brain Res; 1992 Jun; 583(1-2):216-26. PubMed ID: 1504829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of artificial-orientated mats and strands from plasma fibronectin: a morphological study.
    Ejim OS; Blunn GW; Brown RA
    Biomaterials; 1993 Aug; 14(10):743-8. PubMed ID: 8218723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.