BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 14609953)

  • 1. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses.
    Rubbi CP; Milner J
    EMBO J; 2003 Nov; 22(22):6068-77. PubMed ID: 14609953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis.
    Yuan X; Zhou Y; Casanova E; Chai M; Kiss E; Gröne HJ; Schütz G; Grummt I
    Mol Cell; 2005 Jul; 19(1):77-87. PubMed ID: 15989966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleolar disruption ensures nuclear accumulation of p21 upon DNA damage.
    Abella N; Brun S; Calvo M; Tapia O; Weber JD; Berciano MT; Lafarga M; Bachs O; Agell N
    Traffic; 2010 Jun; 11(6):743-55. PubMed ID: 20331843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nucleolus directly regulates p53 export and degradation.
    Boyd MT; Vlatkovic N; Rubbi CP
    J Cell Biol; 2011 Sep; 194(5):689-703. PubMed ID: 21893597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What the nucleolus says to a tumour pathologist.
    Derenzini M; Montanaro L; Treré D
    Histopathology; 2009 May; 54(6):753-62. PubMed ID: 19178588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A p53-independent pathway regulates nucleolar segregation and antigen translocation in response to DNA damage induced by UV irradiation.
    Al-Baker EA; Boyle J; Harry R; Kill IR
    Exp Cell Res; 2004 Jan; 292(1):179-86. PubMed ID: 14720517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signaling to p53: breaking the posttranslational modification code.
    Appella E; Anderson CW
    Pathol Biol (Paris); 2000 Apr; 48(3):227-45. PubMed ID: 10858956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apoptosis and growth arrest induced by platinum compounds in U2-OS cells reflect a specific DNA damage recognition associated with a different p53-mediated response.
    Gatti L; Supino R; Perego P; Pavesi R; Caserini C; Carenini N; Righetti SC; Zuco V; Zunino F
    Cell Death Differ; 2002 Dec; 9(12):1352-9. PubMed ID: 12478472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p53 target gene AEN is a nuclear exonuclease required for p53-dependent apoptosis.
    Kawase T; Ichikawa H; Ohta T; Nozaki N; Tashiro F; Ohki R; Taya Y
    Oncogene; 2008 Jun; 27(27):3797-810. PubMed ID: 18264133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53 checkpoint-defective cells are sensitive to X rays, but not hypoxia.
    Denko NC; Green SL; Edwards D; Giaccia AJ
    Exp Cell Res; 2000 Jul; 258(1):82-91. PubMed ID: 10912790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy.
    Woods SJ; Hannan KM; Pearson RB; Hannan RD
    Biochim Biophys Acta; 2015 Jul; 1849(7):821-9. PubMed ID: 25464032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosomal protein S27-like, a p53-inducible modulator of cell fate in response to genotoxic stress.
    Li J; Tan J; Zhuang L; Banerjee B; Yang X; Chau JF; Lee PL; Hande MP; Li B; Yu Q
    Cancer Res; 2007 Dec; 67(23):11317-26. PubMed ID: 18056458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.
    Stępiński D
    Histochem Cell Biol; 2016 Aug; 146(2):119-39. PubMed ID: 27142852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical role of the nucleolus in activation of the p53-dependent postmitotic checkpoint.
    Tsuchiya M; Katagiri N; Kuroda T; Kishimoto H; Nishimura K; Kumazawa T; Iwasaki N; Kimura K; Yanagisawa J
    Biochem Biophys Res Commun; 2011 Apr; 407(2):378-82. PubMed ID: 21396915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage.
    Jin YQ; An GS; Ni JH; Li SY; Jia HT
    Cell Cycle; 2014; 13(10):1627-38. PubMed ID: 24675884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p53 modulation of the DNA damage response.
    Helton ES; Chen X
    J Cell Biochem; 2007 Mar; 100(4):883-96. PubMed ID: 17031865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear stabilization of p53 requires a functional nucleolar surveillance pathway.
    Hannan KM; Soo P; Wong MS; Lee JK; Hein N; Poh P; Wysoke KD; Williams TD; Montellese C; Smith LK; Al-Obaidi SJ; Núñez-Villacís L; Pavy M; He JS; Parsons KM; Loring KE; Morrison T; Diesch J; Burgio G; Ferreira R; Feng ZP; Gould CM; Madhamshettiwar PB; Flygare J; Gonda TJ; Simpson KJ; Kutay U; Pearson RB; Engel C; Watkins NJ; Hannan RD; George AJ
    Cell Rep; 2022 Nov; 41(5):111571. PubMed ID: 36323262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53.
    Seluanov A; Gorbunova V; Falcovitz A; Sigal A; Milyavsky M; Zurer I; Shohat G; Goldfinger N; Rotter V
    Mol Cell Biol; 2001 Mar; 21(5):1552-64. PubMed ID: 11238892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the nucleolus for cancer-specific activation of p53.
    Drygin D; O'Brien SE; Hannan RD; McArthur GA; Von Hoff DD
    Drug Discov Today; 2014 Mar; 19(3):259-65. PubMed ID: 23993916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p53 regulation by post-translational modification and nuclear retention in response to diverse stresses.
    Jimenez GS; Khan SH; Stommel JM; Wahl GM
    Oncogene; 1999 Dec; 18(53):7656-65. PubMed ID: 10618705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.