BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14610039)

  • 1. Mechanics of wing-assisted incline running (WAIR).
    Bundle MW; Dial KP
    J Exp Biol; 2003 Dec; 206(Pt 24):4553-64. PubMed ID: 14610039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerodynamics of wing-assisted incline running in birds.
    Tobalske BW; Dial KP
    J Exp Biol; 2007 May; 210(Pt 10):1742-51. PubMed ID: 17488937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional, high-resolution skeletal kinematics of the avian wing and shoulder during ascending flapping flight and uphill flap-running.
    Baier DB; Gatesy SM; Dial KP
    PLoS One; 2013; 8(5):e63982. PubMed ID: 23691132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wing-assisted incline running and the evolution of flight.
    Dial KP
    Science; 2003 Jan; 299(5605):402-4. PubMed ID: 12532020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny of Flight Capacity and Pectoralis Function in a Precocial Ground Bird (Alectoris chukar).
    Tobalske BW; Jackson BE; Dial KP
    Integr Comp Biol; 2017 Aug; 57(2):217-230. PubMed ID: 28662566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precocial development of locomotor performance in a ground-dwelling bird (Alectoris chukar): negotiating a three-dimensional terrestrial environment.
    Jackson BE; Segre P; Dial KP
    Proc Biol Sci; 2009 Oct; 276(1672):3457-66. PubMed ID: 19570787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The broad range of contractile behaviour of the avian pectoralis: functional and evolutionary implications.
    Jackson BE; Tobalske BW; Dial KP
    J Exp Biol; 2011 Jul; 214(Pt 14):2354-61. PubMed ID: 21697427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of locomotion over inclined surfaces in laying hens.
    LeBlanc C; Tobalske B; Bowley S; Harlander-Matauschek A
    Animal; 2018 Mar; 12(3):585-596. PubMed ID: 28780926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogeny of aerial righting and wing flapping in juvenile birds.
    Evangelista D; Cam S; Huynh T; Krivitskiy I; Dudley R
    Biol Lett; 2014 Aug; 10(8):. PubMed ID: 25165451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A wing-assisted incline running exercise regime during rearing increases initial flight velocity during descent in adult white- and brown-feathered laying hens.
    Hong GAT; Tobalske BW; van Staaveren N; Leishman EM; Widowski T; Powers DR; Harlander-Matauschek A
    Poult Sci; 2024 Mar; 103(3):103375. PubMed ID: 38198915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Take-off mechanics in hummingbirds (Trochilidae).
    Tobalske BW; Altshuler DL; Powers DR
    J Exp Biol; 2004 Mar; 207(Pt 8):1345-52. PubMed ID: 15010485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When hatchlings outperform adults: locomotor development in Australian brush turkeys (Alectura lathami, Galliformes).
    Dial KP; Jackson BE
    Proc Biol Sci; 2011 Jun; 278(1712):1610-6. PubMed ID: 21047855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running During Avian Ontogeny.
    Heers AM; Rankin JW; Hutchinson JR
    Front Bioeng Biotechnol; 2018; 6():140. PubMed ID: 30406089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition from leg to wing forces during take-off in birds.
    Provini P; Tobalske BW; Crandell KE; Abourachid A
    J Exp Biol; 2012 Dec; 215(Pt 23):4115-24. PubMed ID: 22972887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents.
    Dececchi TA; Larsson HC; Habib MB
    PeerJ; 2016; 4():e2159. PubMed ID: 27441115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of avian flight: muscles and constraints on performance.
    Tobalske BW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics: early birds surmount steep slopes.
    Hutchinson JR
    Nature; 2003 Dec; 426(6968):777-8. PubMed ID: 14685216
    [No Abstract]   [Full Text] [Related]  

  • 20. Transition from wing to leg forces during landing in birds.
    Provini P; Tobalske BW; Crandell KE; Abourachid A
    J Exp Biol; 2014 Aug; 217(Pt 15):2659-66. PubMed ID: 24855670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.