These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14610039)

  • 21. Effects of body size on take-off flight performance in the Phasianidae (Aves).
    Tobalske BW; Dial KP
    J Exp Biol; 2000 Nov; 203(Pt 21):3319-32. PubMed ID: 11023852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical independence of wingbeat and breathing in starlings.
    Banzett RB; Nations CS; Wang N; Butler JP; Lehr JL
    Respir Physiol; 1992 Jul; 89(1):27-36. PubMed ID: 1518985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hummingbirds use wing inertial effects to improve manoeuvrability.
    Haque MN; Cheng B; Tobalske BW; Luo H
    J R Soc Interface; 2023 Oct; 20(207):20230229. PubMed ID: 37788711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Bipedalism in birds, a determining feature for their adaptive success].
    Abourachid A
    J Soc Biol; 2006; 200(2):169-75. PubMed ID: 17151552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height.
    Daley MA; Usherwood JR; Felix G; Biewener AA
    J Exp Biol; 2006 Jan; 209(Pt 1):171-87. PubMed ID: 16354788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Body proportions for the facilitation of walking, running and flying: the case of partridges.
    Nadal J; Ponz C; Margalida A
    BMC Evol Biol; 2018 Nov; 18(1):176. PubMed ID: 30477435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.
    Kruyt JW; van Heijst GF; Altshuler DL; Lentink D
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ontogeny of aerodynamics in mallards: comparative performance and developmental implications.
    Dial TR; Heers AM; Tobalske BW
    J Exp Biol; 2012 Nov; 215(Pt 21):3693-702. PubMed ID: 22855612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.
    Heers AM; Baier DB; Jackson BE; Dial KP
    PLoS One; 2016; 11(4):e0153446. PubMed ID: 27100994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Precocial hindlimbs and altricial forelimbs: partitioning ontogenetic strategies in mallards (Anas platyrhynchos).
    Dial TR; Carrier DR
    J Exp Biol; 2012 Nov; 215(Pt 21):3703-10. PubMed ID: 22855613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds.
    Nudds RL; Taylor GK; Thomas AL
    Proc Biol Sci; 2004 Oct; 271(1552):2071-6. PubMed ID: 15451698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Avian wing proportions and flight styles: first step towards predicting the flight modes of mesozoic birds.
    Wang X; McGowan AJ; Dyke GJ
    PLoS One; 2011; 6(12):e28672. PubMed ID: 22163324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The biomechanical origin of extreme wing allometry in hummingbirds.
    Skandalis DA; Segre PS; Bahlman JW; Groom DJE; Welch KC; Witt CC; McGuire JA; Dudley R; Lentink D; Altshuler DL
    Nat Commun; 2017 Oct; 8(1):1047. PubMed ID: 29051535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments.
    Wang ZJ; Birch JM; Dickinson MH
    J Exp Biol; 2004 Jan; 207(Pt 3):449-60. PubMed ID: 14691093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinematics and mechanics of ground take-off in the starling Sturnis vulgaris and the quail Coturnix coturnix.
    Earls KD
    J Exp Biol; 2000 Feb; 203(Pt 4):725-39. PubMed ID: 10648214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mechanics and behavior of cliff swallows during tandem flights.
    Shelton RM; Jackson BE; Hedrick TL
    J Exp Biol; 2014 Aug; 217(Pt 15):2717-25. PubMed ID: 24855672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fundamental avian wing-stroke provides a new perspective on the evolution of flight.
    Dial KP; Jackson BE; Segre P
    Nature; 2008 Feb; 451(7181):985-9. PubMed ID: 18216784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordination of wingbeat and respiration in birds. II. "Fictive" flight.
    Funk GD; Steeves JD; Milsom WK
    J Appl Physiol (1985); 1992 Sep; 73(3):1025-33. PubMed ID: 1400013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.
    Ros IG; Badger MA; Pierson AN; Bassman LC; Biewener AA
    J Exp Biol; 2015 Feb; 218(Pt 3):480-90. PubMed ID: 25452503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.