These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 14610039)

  • 61. Whiteflies stabilize their take-off with closed wings.
    Ribak G; Dafni E; Gerling D
    J Exp Biol; 2016 Jun; 219(Pt 11):1639-48. PubMed ID: 27045098
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evolution of the wave: aerodynamic and aposematic functions of butterfly wing motion.
    Srygley RB
    Proc Biol Sci; 2007 Apr; 274(1612):913-7. PubMed ID: 17264060
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The evolution of vertical climbing in primates: evidence from reaction forces.
    Hanna JB; Granatosky MC; Rana P; Schmitt D
    J Exp Biol; 2017 Sep; 220(Pt 17):3039-3052. PubMed ID: 28620013
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Locomotor Behavior of Chickens Anticipating Incline Walking.
    LeBlanc C; Tobalske B; Szkotnicki B; Harlander-Matauschek A
    Front Vet Sci; 2017; 4():233. PubMed ID: 29376060
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Whole-body 3D kinematics of bird take-off: key role of the legs to propel the trunk.
    Provini P; Abourachid A
    Naturwissenschaften; 2018 Jan; 105(1-2):12. PubMed ID: 29330588
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The aerodynamics of insect flight.
    Sane SP
    J Exp Biol; 2003 Dec; 206(Pt 23):4191-208. PubMed ID: 14581590
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The aerodynamics of avian take-off from direct pressure measurements in Canada geese (Branta canadensis).
    Usherwood JR; Hedrick TL; Biewener AA
    J Exp Biol; 2003 Nov; 206(Pt 22):4051-6. PubMed ID: 14555745
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Experimental and Numerical Investigation on Dragonfly Wing and Body Motion during Voluntary Take-off.
    Li Q; Zheng M; Pan T; Su G
    Sci Rep; 2018 Jan; 8(1):1011. PubMed ID: 29343709
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain.
    Birn-Jeffery AV; Hubicki CM; Blum Y; Renjewski D; Hurst JW; Daley MA
    J Exp Biol; 2014 Nov; 217(Pt 21):3786-96. PubMed ID: 25355848
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A comparative study of single-leg ground reaction forces in running lizards.
    McElroy EJ; Wilson R; Biknevicius AR; Reilly SM
    J Exp Biol; 2014 Mar; 217(Pt 5):735-42. PubMed ID: 24198262
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies.
    Heers AM; Dial KP
    Evolution; 2015 Feb; 69(2):305-20. PubMed ID: 25494705
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
    Hieronymus TL
    BMC Evol Biol; 2015 Feb; 15():30. PubMed ID: 25880306
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Wingbeat kinematics and motor control of yaw turns in Anna's hummingbirds (Calypte anna).
    Altshuler DL; Quicazán-Rubio EM; Segre PS; Middleton KM
    J Exp Biol; 2012 Dec; 215(Pt 23):4070-84. PubMed ID: 22933610
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Wing wear reduces bumblebee flight performance in a dynamic obstacle course.
    Mountcastle AM; Alexander TM; Switzer CM; Combes SA
    Biol Lett; 2016 Jun; 12(6):. PubMed ID: 27303054
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Identifying generalised segmental acceleration patterns that contribute to ground reaction force features across different running tasks.
    Verheul J; Warmenhoven J; Lisboa P; Gregson W; Vanrenterghem J; Robinson MA
    J Sci Med Sport; 2019 Dec; 22(12):1355-1360. PubMed ID: 31445948
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mechanics of cutting maneuvers by ostriches (Struthio camelus).
    Jindrich DL; Smith NC; Jespers K; Wilson AM
    J Exp Biol; 2007 Apr; 210(Pt 8):1378-90. PubMed ID: 17401120
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hoatzin nestling locomotion: Acquisition of quadrupedal limb coordination in birds.
    Abourachid A; Herrel A; Decamps T; Pages F; Fabre AC; Van Hoorebeke L; Adriaens D; Garcia Amado MA
    Sci Adv; 2019 May; 5(5):eaat0787. PubMed ID: 31131317
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Design and demonstration of a seabird-inspired fixed-wing hybrid UAV-UUV system.
    Stewart W; Weisler W; MacLeod M; Powers T; Defreitas A; Gritter R; Anderson M; Peters K; Gopalarathnam A; Bryant M
    Bioinspir Biomim; 2018 Aug; 13(5):056013. PubMed ID: 30024386
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The feasibility of predicting ground reaction forces during running from a trunk accelerometry driven mass-spring-damper model.
    Nedergaard NJ; Verheul J; Drust B; Etchells T; Lisboa P; Robinson MA; Vanrenterghem J
    PeerJ; 2018; 6():e6105. PubMed ID: 30595981
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Massive, solidified bone in the wing of a volant courting bird.
    Bostwick KS; Riccio ML; Humphries JM
    Biol Lett; 2012 Oct; 8(5):760-3. PubMed ID: 22696286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.