BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 14610467)

  • 1. Role of costimulatory pathways in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis.
    Chitnis T; Khoury SJ
    J Allergy Clin Immunol; 2003 Nov; 112(5):837-49; quiz 850. PubMed ID: 14610467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic peptidomimetic strategies for autoimmune diseases: costimulation blockade.
    Allen SD; Rawale SV; Whitacre CC; Kaumaya PT
    J Pept Res; 2005 Jun; 65(6):591-604. PubMed ID: 15885118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lymphocyte costimulatory receptors in renal disease and transplantation.
    Biancone L; Deambrosis I; Camussi G
    J Nephrol; 2002; 15(1):7-16. PubMed ID: 11936430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Activation of T cells in experimental autoimmune encephalomyelitis and multiple sclerosis].
    Rodríguez-Rodríguez Y; Suárez-Luis I
    Rev Neurol; 2003 Apr 1-15; 36(7):649-52. PubMed ID: 12666047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental autoimmune encephalomyelitis mediated by CD8+ T cells.
    Ji Q; Goverman J
    Ann N Y Acad Sci; 2007 Apr; 1103():157-66. PubMed ID: 17376824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of costimulatory molecules in autoimmunity.
    Kobata T; Azuma M; Yagita H; Okumura K
    Rev Immunogenet; 2000; 2(1):74-80. PubMed ID: 11324695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-cells in multiple sclerosis.
    Severson C; Hafler DA
    Results Probl Cell Differ; 2010; 51():75-98. PubMed ID: 19582415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-cell vaccination in multiple sclerosis: update on clinical application and mode of action.
    Hellings N; Raus J; Stinissen P
    Autoimmun Rev; 2004 Jun; 3(4):267-75. PubMed ID: 15246022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptors and ligands implicated in human T cell costimulatory processes.
    Leitner J; Grabmeier-Pfistershammer K; Steinberger P
    Immunol Lett; 2010 Feb; 128(2):89-97. PubMed ID: 19941899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease.
    Raivich G; Banati R
    Brain Res Brain Res Rev; 2004 Nov; 46(3):261-81. PubMed ID: 15571769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunotherapy targeting the CD40/CD154 costimulatory pathway for treatment of autoimmune disease.
    Howard LM; Miller SD
    Autoimmunity; 2004 Aug; 37(5):411-8. PubMed ID: 15621565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. B7-1-HSA (CD80-CD24), a recombinant hybrid costimulatory molecule retains ligand binding and costimulatory functions.
    Wang YC; Sashidharamurthy R; Nagarajan S; Selvaraj P
    Immunol Lett; 2006 Jun; 105(2):185-92. PubMed ID: 16621031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of regulatory T cells in multiple sclerosis.
    Zozulya AL; Wiendl H
    Nat Clin Pract Neurol; 2008 Jul; 4(7):384-98. PubMed ID: 18578001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral administration of 1,4-aryl-2-mercaptoimidazole inhibits T-cell proliferation and reduces clinical severity in the murine experimental autoimmune encephalomyelitis model.
    Jung EJ; Hur M; Kim YL; Lee GH; Kim J; Kim I; Lee M; Han HK; Kim MS; Hwang S; Kim S; Woo AM; Yoon Y; Park HJ; Won J
    J Pharmacol Exp Ther; 2009 Dec; 331(3):1005-13. PubMed ID: 19741152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Costimulation of memory T-cells by ICOS: a potential therapeutic target for autoimmunity?
    Sporici RA; Perrin PJ
    Clin Immunol; 2001 Sep; 100(3):263-9. PubMed ID: 11513539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis.
    Schreiner B; Mitsdoerffer M; Kieseier BC; Chen L; Hartung HP; Weller M; Wiendl H
    J Neuroimmunol; 2004 Oct; 155(1-2):172-82. PubMed ID: 15342209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Vogt J; Paul F; Aktas O; Müller-Wielsch K; Dörr J; Dörr S; Bharathi BS; Glumm R; Schmitz C; Steinbusch H; Raine CS; Tsokos M; Nitsch R; Zipp F
    Ann Neurol; 2009 Sep; 66(3):310-22. PubMed ID: 19798635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estrogen treatment induces a novel population of regulatory cells, which suppresses experimental autoimmune encephalomyelitis.
    Matejuk A; Bakke AC; Hopke C; Dwyer J; Vandenbark AA; Offner H
    J Neurosci Res; 2004 Jul; 77(1):119-26. PubMed ID: 15197745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of costimulation in autoimmune demyelination.
    Racke MK; Ratts RB; Arredondo L; Perrin PJ; Lovett-Racke A
    J Neuroimmunol; 2000 Jul; 107(2):205-15. PubMed ID: 10854658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preclinical assessment of therapeutic antibodies against human CD40 and human interleukin-12/23p40 in a nonhuman primate model of multiple sclerosis.
    't Hart BA; Hintzen RQ; Laman JD
    Neurodegener Dis; 2008; 5(1):38-52. PubMed ID: 18075274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.