These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 14610628)

  • 1. A critical evaluation of the force control hypothesis in motor control.
    Ostry DJ; Feldman AG
    Exp Brain Res; 2003 Dec; 153(3):275-88. PubMed ID: 14610628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The internal model and the leading joint hypothesis: implications for control of multi-joint movements.
    Dounskaia N
    Exp Brain Res; 2005 Sep; 166(1):1-16. PubMed ID: 16132966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational approaches to motor control and their potential role for interpreting motor dysfunction.
    Scott SH; Norman KE
    Curr Opin Neurol; 2003 Dec; 16(6):693-8. PubMed ID: 14624078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Should the Equilibrium Point Hypothesis (EPH) be Considered a Scientific Theory?
    Sainburg RL
    Motor Control; 2015 Apr; 19(2):142-8. PubMed ID: 25386681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimality, stochasticity, and variability in motor behavior.
    Guigon E; Baraduc P; Desmurget M
    J Comput Neurosci; 2008 Feb; 24(1):57-68. PubMed ID: 18202922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational motor control: redundancy and invariance.
    Guigon E; Baraduc P; Desmurget M
    J Neurophysiol; 2007 Jan; 97(1):331-47. PubMed ID: 17005621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview of adaptive model theory: solving the problems of redundancy, resources, and nonlinear interactions in human movement control.
    Neilson PD; Neilson MD
    J Neural Eng; 2005 Sep; 2(3):S279-312. PubMed ID: 16135890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread access to predictive models in the motor system: a short review.
    Davidson PR; Wolpert DM
    J Neural Eng; 2005 Sep; 2(3):S313-9. PubMed ID: 16135891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromuscular control model of the arm including feedback and feedforward components.
    Stroeve S
    Acta Psychol (Amst); 1998 Nov; 100(1-2):117-31. PubMed ID: 9844560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor adaptation to a small force field superimposed on a large background force.
    Liu J; Reinkensmeyer DJ
    Exp Brain Res; 2007 Apr; 178(3):402-14. PubMed ID: 17091296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyographic and biomechanical characteristics of segmental postural adjustments associated with voluntary wrist movements. Influence of an elbow support.
    Chabran E; Maton B; Ribreau C; Fourment A
    Exp Brain Res; 2001 Nov; 141(2):133-45. PubMed ID: 11713625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer and durability of acquired patterns of human arm stiffness.
    Darainy M; Malfait N; Towhidkhah F; Ostry DJ
    Exp Brain Res; 2006 Apr; 170(2):227-37. PubMed ID: 16328279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does the CNS control arm reaching movements? Introducing a hierarchical nonlinear predictive control organization based on the idea of muscle synergies.
    Dehghani S; Bahrami F
    PLoS One; 2020; 15(2):e0228726. PubMed ID: 32023300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threshold control of motor actions prevents destabilizing effects of proprioceptive delays.
    Pilon JF; Feldman AG
    Exp Brain Res; 2006 Sep; 174(2):229-39. PubMed ID: 16676171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMClab, a model to assess the contributions of muscle visco-elasticity and afferent feedback to joint dynamics.
    Schouten AC; Mugge W; van der Helm FC
    J Biomech; 2008; 41(8):1659-67. PubMed ID: 18457842
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.