These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 14610894)

  • 41. Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes.
    Schaefer SC; Gasic K; Cammue B; Broekaert W; van Damme EJ; Peumans WJ; Korban SS
    Planta; 2005 Nov; 222(5):858-66. PubMed ID: 16047198
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.
    Juan JX; Yu XH; Jiang XM; Gao Z; Zhang Y; Li W; Duan YD; Yang G
    Genet Mol Res; 2015 Jan; 14(1):597-608. PubMed ID: 25729995
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant.
    Ko TS; Lee S; Krasnyanski S; Korban SS
    Theor Appl Genet; 2003 Aug; 107(3):439-47. PubMed ID: 12721637
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly efficient
    Sandhya D; Jogam P; Venkatapuram AK; Savitikadi P; Peddaboina V; Allini VR; Abbagani S
    Saudi J Biol Sci; 2022 Jun; 29(6):103292. PubMed ID: 35540178
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants.
    Petri C; Wang H; Alburquerque N; Faize M; Burgos L
    Plant Cell Rep; 2008 Aug; 27(8):1317-24. PubMed ID: 18449544
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.
    Ravanfar SA; Aziz MA; Saud HM; Abdullah JO
    Curr Genet; 2015 Nov; 61(4):653-63. PubMed ID: 25986972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biological activity of the tzs gene of nopaline Agrobacterium tumefaciens GV3101 in plant regeneration and genetic transformation.
    Han ZF; Hunter DM; Sibbald S; Zhang JS; Tian L
    Mol Plant Microbe Interact; 2013 Nov; 26(11):1359-65. PubMed ID: 24088018
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Turf Grasses.
    Longo C; Lickwar C; Hu Q; Nelson-Vasilchik K; Viola D; Hague J; Chandlee JM; Luo H; Kausch AP
    Methods Mol Biol; 2006; 344():83-95. PubMed ID: 17033054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens -transformed roots and Agrobacterium rhizogenes-transformed hairy roots.
    Crane C; Wright E; Dixon RA; Wang ZY
    Planta; 2006 May; 223(6):1344-54. PubMed ID: 16575594
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic transformation and regeneration of Sesbania drummondii using cotyledonary nodes.
    Padmanabhan P; Sahi SV
    Plant Cell Rep; 2009 Jan; 28(1):31-40. PubMed ID: 18825383
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars.
    Arun M; Subramanyam K; Mariashibu TS; Theboral J; Shivanandhan G; Manickavasagam M; Ganapathi A
    Appl Biochem Biotechnol; 2015 Feb; 175(4):2266-87. PubMed ID: 25480345
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of Different β-Lactam Antibiotics on Indirect Tomato (
    Varlamova NV; Dolgikh YI; Blinkov AO; Baranova EN; Khaliluev MR
    Antibiotics (Basel); 2021 Jun; 10(6):. PubMed ID: 34205842
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens.
    Tang W; Sederoff R; Whetten R
    Planta; 2001 Oct; 213(6):981-9. PubMed ID: 11722135
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An efficient plant regeneration and Agrobacterium-mediated genetic transformation of Tagetes erecta.
    Gupta V; Ur Rahman L
    Protoplasma; 2015 Jul; 252(4):1061-70. PubMed ID: 25504508
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pine (Pinus radiata).
    Grant J; Dale T; Cooper P
    Methods Mol Biol; 2006; 344():135-41. PubMed ID: 17033058
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Micro-Tom Tomato as an Alternative Plant Model System: Mutant Collection and Efficient Transformation.
    Shikata M; Ezura H
    Methods Mol Biol; 2016; 1363():47-55. PubMed ID: 26577780
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit.
    Orzaez D; Mirabel S; Wieland WH; Granell A
    Plant Physiol; 2006 Jan; 140(1):3-11. PubMed ID: 16403736
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An efficient Agrobacterium-mediated transformation system for poplar.
    Movahedi A; Zhang J; Amirian R; Zhuge Q
    Int J Mol Sci; 2014 Jun; 15(6):10780-93. PubMed ID: 24933641
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants.
    Ceasar SA; Ignacimuthu S
    Plant Cell Rep; 2011 Sep; 30(9):1759-70. PubMed ID: 21584677
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Agrobacterium-mediated transformation of meadow fescue (Festuca pratensis Huds.).
    Gao C; Liu J; Nielsen KK
    Plant Cell Rep; 2009 Sep; 28(9):1431-7. PubMed ID: 19603171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.