BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 14610937)

  • 1. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.
    Saariaho AM; Jääskeläinen AS; Nuopponen M; Vuorinen T
    Appl Spectrosc; 2003 Jan; 57(1):58-66. PubMed ID: 14610937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds in Scots pine (Pinus sylvestris) wood. Part II. Hydrophilic compounds.
    Nuopponen M; Willför S; Jääskeläinen AS; Vuorinen T
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Nov; 60(13):2963-8. PubMed ID: 15477131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine (Pinus sylvestris) wood. Part I: lipophilic compounds.
    Nuopponen M; Willför S; Jääskeläinen AS; Sundberg A; Vuorinen T
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Nov; 60(13):2953-61. PubMed ID: 15477130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Syringyl Units in Wood Lignins by FT-Raman Spectroscopy.
    Agarwal UP; Ralph SA; Padmakshan D; Liu S; Foster CE
    J Agric Food Chem; 2019 Apr; 67(15):4367-4374. PubMed ID: 30916944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of woody and herbaceous biomasses lignin composition with 1064 nm dispersive multichannel Raman spectroscopy.
    Lupoi JS; Smith EA
    Appl Spectrosc; 2012 Aug; 66(8):903-10. PubMed ID: 22800567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid determination of syringyl: guaiacyl ratios using FT-Raman spectroscopy.
    Sun L; Varanasi P; Yang F; Loqué D; Simmons BA; Singh S
    Biotechnol Bioeng; 2012 Mar; 109(3):647-56. PubMed ID: 22012706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of lignin by resonance Raman spectroscopy.
    Barsberg S; Matousek P; Towrie M
    Macromol Biosci; 2005 Aug; 5(8):743-52. PubMed ID: 16088976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity of lignin with different composition of aromatic syringyl/guaiacyl structures and erythro/threo side chain structures in β-O-4 type during alkaline delignification: as a basis for the different degradability of hardwood and softwood lignin.
    Shimizu S; Yokoyama T; Akiyama T; Matsumoto Y
    J Agric Food Chem; 2012 Jul; 60(26):6471-6. PubMed ID: 22694300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the carbonyl groups in native lignin utilizing Fourier transform Raman spectroscopy.
    Kihara M; Takayama M; Wariishi H; Tanaka H
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Aug; 58(10):2213-21. PubMed ID: 12212746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman-spectroscopy-based noninvasive microanalysis of native lignin structure.
    Perera PN; Schmidt M; Chiang VL; Schuck PJ; Adams PD
    Anal Bioanal Chem; 2012 Jan; 402(2):983-7. PubMed ID: 22071606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative studies on lignin structures in normal and tension wood of Populus × euramericana cv. "74/76".
    Guan Y; Shu T; Gao H; Zhou L; Zhang L
    Int J Biol Macromol; 2021 Mar; 172():178-185. PubMed ID: 33421471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV resonance Raman spectroscopy of DNA and protein constituents of viruses: assignments and cross sections for excitations at 257, 244, 238, and 229 nm.
    Wen ZQ; Thomas GJ
    Biopolymers; 1998 Mar; 45(3):247-56. PubMed ID: 9465787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods.
    Agarwal UP; Reiner RR; Ralph SA
    J Agric Food Chem; 2013 Jan; 61(1):103-13. PubMed ID: 23241140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of FTIR spectroscopy to the characterization of archeological wood.
    Traoré M; Kaal J; Martínez Cortizas A
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():63-70. PubMed ID: 26291671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of lignin structure by quantitative 2D NMR.
    Sette M; Wechselberger R; Crestini C
    Chemistry; 2011 Aug; 17(34):9529-35. PubMed ID: 21721058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of beta-O-4-type artificial lignin polymers and their analysis by NMR spectroscopy.
    Kishimoto T; Uraki Y; Ubukata M
    Org Biomol Chem; 2008 Aug; 6(16):2982-7. PubMed ID: 18688492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV near-resonance Raman spectroscopic study of 1,1'-bi-2-naphthol solutions.
    Li ZY; Chen DM; He TJ; Liu FC
    J Phys Chem A; 2007 Jun; 111(22):4767-75. PubMed ID: 17500545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of increased nitrogen supply on the lignification of poplar wood.
    Pitre FE; Pollet B; Lafarguette F; Cooke JE; MacKay JJ; Lapierre C
    J Agric Food Chem; 2007 Dec; 55(25):10306-14. PubMed ID: 17988087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin radicals in the plant cell wall probed by Kerr-gated resonance Raman spectroscopy.
    Barsberg S; Matousek P; Towrie M; Jørgensen H; Felby C
    Biophys J; 2006 Apr; 90(8):2978-86. PubMed ID: 16443659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin structural variation in hardwood species.
    Santos RB; Capanema EA; Balakshin MY; Chang HM; Jameel H
    J Agric Food Chem; 2012 May; 60(19):4923-30. PubMed ID: 22533315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.