These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 14610960)

  • 1. Optical and mass spectrometric study of the pyrolysis gas of wood particles.
    Brackmann C; Aldén M; Bengtsson PE; Davidsson KO; Pettersson JB
    Appl Spectrosc; 2003 Feb; 57(2):216-22. PubMed ID: 14610960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online laser desorption-multiphoton postionization mass spectrometry of individual aerosol particles: molecular source indicators for particles emitted from different traffic-related and wood combustion sources.
    Bente M; Sklorz M; Streibel T; Zimmermann R
    Anal Chem; 2008 Dec; 80(23):8991-9004. PubMed ID: 18983175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of pyrolysis of large wood particles.
    Sadhukhan AK; Gupta P; Saha RK
    Bioresour Technol; 2009 Jun; 100(12):3134-9. PubMed ID: 19231172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of archaeological waterlogged wood by pyrolytic and mass spectrometric techniques.
    Łucejko JJ; Modugno F; Ribechini E; del Río JC
    Anal Chim Acta; 2009 Nov; 654(1):26-34. PubMed ID: 19850164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.
    Cleveland D; Stchur P; Hou X; Yang KX; Zhou J; Michel RG
    Appl Spectrosc; 2005 Dec; 59(12):1427-44. PubMed ID: 16390581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber.
    Stiebeiner A; Rehband O; Garcia-Fernandez R; Rauschenbeutel A
    Opt Express; 2009 Nov; 17(24):21704-11. PubMed ID: 19997412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Two-photon absorption spectrum].
    Lei H; Huang ZL; Wang HZ; Tian YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Aug; 22(4):559-61. PubMed ID: 12938364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modelling of slow pyrolysis of a particle of treated wood waste.
    Ratte J; Marias F; Vaxelaire J; Bernada P
    J Hazard Mater; 2009 Oct; 170(2-3):1023-40. PubMed ID: 19535204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of single-particle laser desorption/ionization time-of-flight mass spectrometry for detection of polycyclic aromatic hydrocarbons from soot particles originating from an industrial combustion process.
    Zimmermann R; Ferge T; Gälli M; Karlsson R
    Rapid Commun Mass Spectrom; 2003; 17(8):851-9. PubMed ID: 12672141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for formaldehyde detection in flames and engines using a single-mode Nd:YAG/OPO laser system.
    Brackmann C; Li Z; Rupinski M; Docquier N; Pengloan G; Aldén M
    Appl Spectrosc; 2005 Jun; 59(6):763-8. PubMed ID: 16053542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A detailed one-dimensional model of combustion of a woody biomass particle.
    Haseli Y; van Oijen JA; de Goey LP
    Bioresour Technol; 2011 Oct; 102(20):9772-82. PubMed ID: 21855327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparatory study for detection of nickel in industrial flue gas by excimer laser-induced fragmentation fluorescence spectroscopy.
    Gottwald U; Monkhouse P
    Appl Spectrosc; 2003 Feb; 57(2):117-23. PubMed ID: 14610946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying spatial localization of optical mapping using Monte Carlo simulations.
    Ding L; Splinter R; Knisley SB
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1098-107. PubMed ID: 11585033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and characterization of a femtosecond fluorescence spectrometer based on optical Kerr gating.
    Arzhantsev S; Maroncelli M
    Appl Spectrosc; 2005 Feb; 59(2):206-20. PubMed ID: 15720762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Online aerosol mass spectrometry of single micrometer-sized particles containing poly(ethylene glycol).
    Bogan MJ; Patton E; Srivastava A; Martin S; Fergenson DP; Steele PT; Tobias HJ; Gard EE; Frank M
    Rapid Commun Mass Spectrom; 2007; 21(7):1214-20. PubMed ID: 17330211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time analysis of soot emissions from bituminous coal pyrolysis and combustion with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer.
    Gao S; Zhang Y; Meng J; Shu J
    Sci Total Environ; 2009 Jan; 407(3):1193-9. PubMed ID: 19012948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of large ions in FT-ICR mass spectrometry.
    Laskin J; Futrell JH
    Mass Spectrom Rev; 2005; 24(2):135-67. PubMed ID: 15389858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of ion energy distributions using a combined energy and mass analyzer.
    Walton SG; Fernsler RF; Leonhardt D
    Rev Sci Instrum; 2007 Aug; 78(8):083503. PubMed ID: 17764322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive detection of optical discrete absorption and resonance fluorescence of fused silica in the far ultraviolet.
    Bayrakçeken F
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):923-5. PubMed ID: 15036104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.