These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 14611194)

  • 1. Inhibitory effects of plant-derived flavonoids and phenolic acids on malonaldehyde formation from ethyl arachidonate.
    Lee KG; Shibamoto T; Takeoka GR; Lee SE; Kim JH; Park BS
    J Agric Food Chem; 2003 Nov; 51(24):7203-7. PubMed ID: 14611194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous determination of acrolein, malonaldehyde and 4-hydroxy-2-nonenal produced from lipids oxidized with Fenton's reagent.
    Miyake T; Shibamoto T
    Food Chem Toxicol; 1996 Oct; 34(10):1009-11. PubMed ID: 9012777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of malonaldehyde formation in oxidized calf thymus DNA with synthetic and natural antioxidants.
    Matsufuji H; Shibamoto T
    J Agric Food Chem; 2004 Sep; 52(18):5759-63. PubMed ID: 15373421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis.
    Lee JH; Kim GH
    J Food Sci; 2010 Sep; 75(7):H212-7. PubMed ID: 21535545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid.
    Sugihara N; Arakawa T; Ohnishi M; Furuno K
    Free Radic Biol Med; 1999 Dec; 27(11-12):1313-23. PubMed ID: 10641726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of xanthine oxidase inhibition activity of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2009 Mar; 636(1):42-50. PubMed ID: 19231354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas chromatographic analysis of malonaldehyde and 4-hydroxy-2-(E)-nonenal produced from arachidonic acid and linoleic acid in a lipid peroxidation model system.
    Tamura H; Shibamoto T
    Lipids; 1991 Feb; 26(2):170-3. PubMed ID: 1904972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effect of 2"-O-glycosyl isovitexin and alpha-tocopherol on genotoxic glyoxal formation in a lipid peroxidation system.
    Nishiyama T; Hagiwara Y; Hagiwara H; Shibamoto T
    Food Chem Toxicol; 1994 Nov; 32(11):1047-51. PubMed ID: 7959459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effects of volatile antioxidants found in various beans on malonaldehyde formation in horse blood plasma.
    Lee SJ; Lee KG
    Food Chem Toxicol; 2005 Apr; 43(4):515-20. PubMed ID: 15721197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and inhibition of genotoxic malonaldehyde from DNA oxidation controlled with EDTA.
    Matsufuji H; Ochi H; Shibamoto T
    Food Chem Toxicol; 2006 Feb; 44(2):236-41. PubMed ID: 16122862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavonoids with potent antioxidant activity found in young green barley leaves.
    Kamiyama M; Shibamoto T
    J Agric Food Chem; 2012 Jun; 60(25):6260-7. PubMed ID: 22681491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenolics as potential antioxidant therapeutic agents: mechanism and actions.
    Soobrattee MA; Neergheen VS; Luximon-Ramma A; Aruoma OI; Bahorun T
    Mutat Res; 2005 Nov; 579(1-2):200-13. PubMed ID: 16126236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals.
    Cai Q; Rahn RO; Zhang R
    Cancer Lett; 1997 Oct; 119(1):99-107. PubMed ID: 18372528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel gas chromatographic method for determination of malondialdehyde from oxidized DNA.
    Shibamoto T
    Methods Mol Biol; 2015; 1208():49-62. PubMed ID: 25323498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved malonaldehyde assay using headspace solid-phase microextraction and its application to the measurement of the antioxidant activity of phytochemicals.
    Fujioka K; Shibamoto T
    J Agric Food Chem; 2005 Jun; 53(12):4708-13. PubMed ID: 15941304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the Fenton reaction of the iron-ATP complex.
    Cheng IF; Breen K
    Biometals; 2000 Mar; 13(1):77-83. PubMed ID: 10831228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant activity of flavonoids isolated from young green barley leaves toward biological lipid samples.
    Benedet JA; Umeda H; Shibamoto T
    J Agric Food Chem; 2007 Jul; 55(14):5499-504. PubMed ID: 17539660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavonoids as antioxidant agents: importance of their interaction with biomembranes.
    Saija A; Scalese M; Lanza M; Marzullo D; Bonina F; Castelli F
    Free Radic Biol Med; 1995 Oct; 19(4):481-6. PubMed ID: 7590397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant and cytotoxic activities of naturally occurring phenolic and related compounds: a comparative study.
    Rao YK; Geethangili M; Fang SH; Tzeng YM
    Food Chem Toxicol; 2007 Sep; 45(9):1770-6. PubMed ID: 17475387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants.
    Mustafa RA; Abdul Hamid A; Mohamed S; Bakar FA
    J Food Sci; 2010; 75(1):C28-35. PubMed ID: 20492146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.