These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 14611293)

  • 1. Nonlinear dependence of the contact angle of nanodroplets on contact line curvature.
    Checco A; Guenoun P; Daillant J
    Phys Rev Lett; 2003 Oct; 91(18):186101. PubMed ID: 14611293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of contact-line curvature on the evaporation of nanodroplets from solid substrates.
    Zhang J; Leroy F; Müller-Plathe F
    Phys Rev Lett; 2014 Jul; 113(4):046101. PubMed ID: 25105634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of line tension on droplets in the submicrometer range.
    Heim LO; Bonaccurso E
    Langmuir; 2013 Nov; 29(46):14147-53. PubMed ID: 24156499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of contact line curvature on solid-fluid surface tensions without line tension.
    Ward CA; Wu J
    Phys Rev Lett; 2008 Jun; 100(25):256103. PubMed ID: 18643678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size dependence of shape and stiffness of single sessile oil nanodroplets as measured by atomic force microscopy.
    Munz M; Mills T
    Langmuir; 2014 Apr; 30(15):4243-52. PubMed ID: 24660961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Going beyond the standard line tension: Size-dependent contact angles of water nanodroplets.
    Kanduč M
    J Chem Phys; 2017 Nov; 147(17):174701. PubMed ID: 29117696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of molecular branching and surface wettability on solid-liquid surface tension and line-tension of liquid alkane surface nanodroplets.
    Jabbarzadeh A
    J Colloid Interface Sci; 2024 Jul; 666():355-370. PubMed ID: 38603878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces.
    An H; Liu G; Craig VS
    Adv Colloid Interface Sci; 2015 Aug; 222():9-17. PubMed ID: 25128452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-dependent contact angle and the wetting and drying transition of a droplet adsorbed onto a spherical substrate: Line-tension effect.
    Iwamatsu M
    Phys Rev E; 2016 Oct; 94(4-1):042803. PubMed ID: 27841462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
    Ba Y; Liu H; Sun J; Zheng R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043306. PubMed ID: 24229303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do the contact angle and line tension of surface-attached droplets depend on the radius of curvature?
    Das SK; Egorov SA; Virnau P; Winter D; Binder K
    J Phys Condens Matter; 2018 Jun; 30(25):255001. PubMed ID: 29741496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid nanodroplets spreading on chemically patterned surfaces.
    Grest GS; Heine DR; Webb EB
    Langmuir; 2006 May; 22(10):4745-9. PubMed ID: 16649791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous spreading and evaporation: recent developments.
    Semenov S; Trybala A; Rubio RG; Kovalchuk N; Starov V; Velarde MG
    Adv Colloid Interface Sci; 2014 Apr; 206():382-98. PubMed ID: 24075076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed mode of dissolving immersed nanodroplets at a solid-water interface.
    Zhang X; Wang J; Bao L; Dietrich E; van der Veen RC; Peng S; Friend J; Zandvliet HJ; Yeo L; Lohse D
    Soft Matter; 2015 Mar; 11(10):1889-900. PubMed ID: 25605229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Line tension and morphology of a droplet and a bubble attached to the inner wall of a spherical cavity.
    Iwamatsu M
    J Chem Phys; 2016 Apr; 144(14):144704. PubMed ID: 27083742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of wetting behavior of water droplets on polytetrafluorethylene surfaces.
    Chen S; Wang J; Ma T; Chen D
    J Chem Phys; 2014 Mar; 140(11):114704. PubMed ID: 24655195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.
    Li H; Zeng XC
    ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the Molecular Structure of a Self-Assembled Monolayer on the Formation and Morphology of Surface Nanodroplets.
    Xu C; Peng S; Qiao G; Zhang X
    Langmuir; 2016 Nov; 32(43):11197-11202. PubMed ID: 27640216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.