These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 14611343)

  • 1. Ultrastable optical clock with neutral atoms in an engineered light shift trap.
    Katori H; Takamoto M; Pal'chikov VG; Ovsiannikov VD
    Phys Rev Lett; 2003 Oct; 91(17):173005. PubMed ID: 14611343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice.
    Takamoto M; Katori H
    Phys Rev Lett; 2003 Nov; 91(22):223001. PubMed ID: 14683233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser locking to the 199Hg 1S0-3P0 clock transition with 5.4 × 10(-15)/✓τ fractional frequency instability.
    McFerran JJ; Magalhães DV; Mandache C; Millo J; Zhang W; Le Coq Y; Santarelli G; Bize S
    Opt Lett; 2012 Sep; 37(17):3477-9. PubMed ID: 22940921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate optical lattice clock with 87Sr atoms.
    Le Targat R; Baillard X; Fouché M; Brusch A; Tcherbakoff O; Rovera GD; Lemonde P
    Phys Rev Lett; 2006 Sep; 97(13):130801. PubMed ID: 17026019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr.
    Santra R; Arimondo E; Ido T; Greene CH; Ye J
    Phys Rev Lett; 2005 May; 94(17):173002. PubMed ID: 15904285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.
    Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical clocks based on ultranarrow three-photon resonances in alkaline Earth atoms.
    Hong T; Cramer C; Nagourney W; Fortson EN
    Phys Rev Lett; 2005 Feb; 94(5):050801. PubMed ID: 15783624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium.
    Hoyt CW; Barber ZW; Oates CW; Fortier TM; Diddams SA; Hollberg L
    Phys Rev Lett; 2005 Aug; 95(8):083003. PubMed ID: 16196856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 87Sr lattice clock with inaccuracy below 10 -15.
    Boyd MM; Ludlow AD; Blatt S; Foreman SM; Ido T; Zelevinsky T; Ye J
    Phys Rev Lett; 2007 Feb; 98(8):083002. PubMed ID: 17359093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks.
    Blatt S; Ludlow AD; Campbell GK; Thomsen JW; Zelevinsky T; Boyd MM; Ye J; Baillard X; Fouché M; Le Targat R; Brusch A; Lemonde P; Takamoto M; Hong FL; Katori H; Flambaum VV
    Phys Rev Lett; 2008 Apr; 100(14):140801. PubMed ID: 18518019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury.
    Petersen M; Chicireanu R; Dawkins ST; Magalhães DV; Mandache C; Le Coq Y; Clairon A; Bize S
    Phys Rev Lett; 2008 Oct; 101(18):183004. PubMed ID: 18999828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multipolar Polarizabilities and Hyperpolarizabilities in the Sr Optical Lattice Clock.
    Porsev SG; Safronova MS; Safronova UI; Kozlov MG
    Phys Rev Lett; 2018 Feb; 120(6):063204. PubMed ID: 29481257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime.
    Ido T; Katori H
    Phys Rev Lett; 2003 Aug; 91(5):053001. PubMed ID: 12906592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical atomic coherence at the 1-second time scale.
    Boyd MM; Zelevinsky T; Ludlow AD; Foreman SM; Blatt S; Ido T; Ye J
    Science; 2006 Dec; 314(5804):1430-3. PubMed ID: 17138896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1 x 10(-16) inaccuracy.
    Swallows MD; Campbell GK; Ludlow AD; Boyd MM; Thomsen JW; Martin MJ; Blatt S; Nicholson TL; Ye J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):574-82. PubMed ID: 20211772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical clock with millihertz linewidth based on a phase-matching effect.
    Yu D; Chen J
    Phys Rev Lett; 2007 Feb; 98(5):050801. PubMed ID: 17358840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Narrow-line Cooling and Determination of the Magic Wavelength of Cd.
    Yamaguchi A; Safronova MS; Gibble K; Katori H
    Phys Rev Lett; 2019 Sep; 123(11):113201. PubMed ID: 31573273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of the 1S0-->3P0 clock transition in 27Al+.
    Rosenband T; Schmidt PO; Hume DB; Itano WM; Fortier TM; Stalnaker JE; Kim K; Diddams SA; Koelemeij JC; Bergquist JC; Wineland DJ
    Phys Rev Lett; 2007 Jun; 98(22):220801. PubMed ID: 17677830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.