These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 14611364)

  • 1. Dynamical excitonic effects in metals and semiconductors.
    Marini A; Del Sole R
    Phys Rev Lett; 2003 Oct; 91(17):176402. PubMed ID: 14611364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitonic effects in solids described by time-dependent density-functional theory.
    Reining L; Olevano V; Rubio A; Onida G
    Phys Rev Lett; 2002 Feb; 88(6):066404. PubMed ID: 11863831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient calculation of excitonic effects in solids including approximated quasiparticle energies.
    Matusalem F; Marques M; Guilhon I; Teles LK
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32492665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Koopmans Meets Bethe-Salpeter: Excitonic Optical Spectra without GW.
    Elliott JD; Colonna N; Marsili M; Marzari N; Umari P
    J Chem Theory Comput; 2019 Jun; 15(6):3710-3720. PubMed ID: 30998361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical correction to the Bethe-Salpeter equation beyond the plasmon-pole approximation.
    Loos PF; Blase X
    J Chem Phys; 2020 Sep; 153(11):114120. PubMed ID: 32962392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitons and optical properties of alpha-quartz.
    Chang EK; Rohlfing M; Louie SG
    Phys Rev Lett; 2000 Sep; 85(12):2613-6. PubMed ID: 10978120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitonic optical spectrum of semiconductors obtained by time-dependent density-functional theory with the exact-exchange kernel.
    Kim YH; Görling A
    Phys Rev Lett; 2002 Aug; 89(9):096402. PubMed ID: 12190423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large excitonic effect on van der Waals interaction between two-dimensional semiconductors.
    Yang J; Liu X; Guo W
    Nanoscale; 2020 Jun; 12(23):12639-12646. PubMed ID: 32514503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitonic and quasiparticle gaps in Si nanocrystals.
    Delerue C; Lannoo M; Allan G
    Phys Rev Lett; 2000 Mar; 84(11):2457-60. PubMed ID: 11018909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter-free calculation of response functions in time-dependent density-functional theory.
    Sottile F; Olevano V; Reining L
    Phys Rev Lett; 2003 Aug; 91(5):056402. PubMed ID: 12906612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real Space-Real Time Evolution of Excitonic States Based on the Bethe-Salpeter Equation Method.
    Elliott JD; Mosconi E; De Angelis F; Ambrosetti A; Umari P
    J Phys Chem Lett; 2021 Aug; 12(30):7261-7269. PubMed ID: 34314589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical Excitonic Effects in Doped Two-Dimensional Semiconductors.
    Gao S; Liang Y; Spataru CD; Yang L
    Nano Lett; 2016 Sep; 16(9):5568-73. PubMed ID: 27479740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory.
    Gulans A; Kontur S; Meisenbichler C; Nabok D; Pavone P; Rigamonti S; Sagmeister S; Werner U; Draxl C
    J Phys Condens Matter; 2014 Sep; 26(36):363202. PubMed ID: 25135665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Si nanowires to porous silicon: the role of excitonic effects.
    Bruno M; Palummo M; Marini A; Del Sole R; Ossicini S
    Phys Rev Lett; 2007 Jan; 98(3):036807. PubMed ID: 17358714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-edge structures from first principles all-electron Bethe-Salpeter equation calculations.
    Olovsson W; Tanaka I; Puschnig P; Ambrosch-Draxl C
    J Phys Condens Matter; 2009 Mar; 21(10):104205. PubMed ID: 21817425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-frequency dynamical Bethe-Salpeter equation without frequency and a study of double excitations.
    Bintrim SJ; Berkelbach TC
    J Chem Phys; 2022 Jan; 156(4):044114. PubMed ID: 35105075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio calculation of optical spectra of liquids: many-body effects in the electronic excitations of water.
    Garbuio V; Cascella M; Reining L; Sole RD; Pulci O
    Phys Rev Lett; 2006 Sep; 97(13):137402. PubMed ID: 17026073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Huge excitonic effects in layered hexagonal boron nitride.
    Arnaud B; Lebègue S; Rabiller P; Alouani M
    Phys Rev Lett; 2006 Jan; 96(2):026402. PubMed ID: 16486604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitonic effects on the silicon plasmon resonance.
    Olevano V; Reining L
    Phys Rev Lett; 2001 Jun; 86(26 Pt 1):5962-5. PubMed ID: 11415404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eliashberg theory of excitonic insulating transition in graphene.
    Wang JR; Liu GZ
    J Phys Condens Matter; 2011 Apr; 23(15):155602. PubMed ID: 21460428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.