These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 14611375)

  • 21. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement and modification of biexciton-exciton time correlations.
    Huber T; Predojević A; Zoubi H; Jayakumar H; Solomon GS; Weihs G
    Opt Express; 2013 Apr; 21(8):9890-8. PubMed ID: 23609694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum Confined Stark Effect in a GaAs/AlGaAs Nanowire Quantum Well Tube Device: Probing Exciton Localization.
    Badada BH; Shi T; Jackson HE; Smith LM; Zheng C; Etheridge J; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2015 Dec; 15(12):7847-52. PubMed ID: 26562619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanowire Quantum Dot Surface Engineering for High Temperature Single Photon Emission.
    Yu P; Li Z; Wu T; Wang YT; Tong X; Li CF; Wang Z; Wei SH; Zhang Y; Liu H; Fu L; Zhang Y; Wu J; Tan HH; Jagadish C; Wang ZM
    ACS Nano; 2019 Nov; 13(11):13492-13500. PubMed ID: 31689076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct Imaging of Long-Range Exciton Transport in Quantum Dot Superlattices by Ultrafast Microscopy.
    Yoon SJ; Guo Z; Dos Santos Claro PC; Shevchenko EV; Huang L
    ACS Nano; 2016 Jul; 10(7):7208-15. PubMed ID: 27387010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities.
    Calic M; Gallo P; Felici M; Atlasov KA; Dwir B; Rudra A; Biasiol G; Sorba L; Tarel G; Savona V; Kapon E
    Phys Rev Lett; 2011 Jun; 106(22):227402. PubMed ID: 21702633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical pumping and a nondestructive readout of a single magnetic impurity spin in an InAs/GaAs quantum dot.
    Baudin E; Benjamin E; Lemaître A; Krebs O
    Phys Rev Lett; 2011 Nov; 107(19):197402. PubMed ID: 22181643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient quantum dot light-emitting diodes by controlling the carrier accumulation and exciton formation.
    Ji W; Tian Y; Zeng Q; Qu S; Zhang L; Jing P; Wang J; Zhao J
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14001-7. PubMed ID: 25026558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superfluorescent pulsed emission from biexcitons in an ensemble of semiconductor quantum dots.
    Miyajima K; Kagotani Y; Saito S; Ashida M; Itoh T
    J Phys Condens Matter; 2009 May; 21(19):195802. PubMed ID: 21825497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emission enhancement and polarization of semiconductor quantum dots with nanoimprinted plasmonic cavities: towards scalable fabrication of plasmon-exciton displays.
    Cadusch JJ; Panchenko E; Kirkwood N; James TD; Gibson BC; Webb KJ; Mulvaney P; Roberts A
    Nanoscale; 2015 Sep; 7(33):13816-21. PubMed ID: 26223481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ probing and integration of single self-assembled quantum dots-in-nanowires for quantum photonics.
    Zha GW; Shang XJ; Ni HQ; Yu Y; Xu JX; Wei SH; Ma B; Zhang LC; Niu ZC
    Nanotechnology; 2015 Sep; 26(38):385706. PubMed ID: 26334185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO₂ films by transient absorption and single dot fluorescence spectroscopy.
    Song N; Zhu H; Liu Z; Huang Z; Wu D; Lian T
    ACS Nano; 2013 Feb; 7(2):1599-608. PubMed ID: 23281781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic field effect on the energy levels of an exciton in a GaAs quantum dot: Application for excitonic lasers.
    Jahan KL; Boda A; Shankar IV; Raju CN; Chatterjee A
    Sci Rep; 2018 Mar; 8(1):5073. PubMed ID: 29567977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves.
    Metcalfe M; Carr SM; Muller A; Solomon GS; Lawall J
    Phys Rev Lett; 2010 Jul; 105(3):037401. PubMed ID: 20867805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards Scalable Entangled Photon Sources with Self-Assembled InAs/GaAs Quantum Dots.
    Wang J; Gong M; Guo GC; He L
    Phys Rev Lett; 2015 Aug; 115(6):067401. PubMed ID: 26296130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wet-Etched Microlens Array for 200 nm Spatial Isolation of Epitaxial Single QDs and 80 nm Broadband Enhancement of Their Quantum Light Extraction.
    Li S; Shang X; Chen Y; Su X; Hao H; Liu H; Zhang Y; Ni H; Niu Z
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33925761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of the 3-Fold Symmetric Shape of Group III-Nitride Quantum Dots: Suppression of Fine-Structure Splitting.
    Yeo HS; Lee K; Cho JH; Park SH; Cho YH
    Nano Lett; 2020 Dec; 20(12):8461-8468. PubMed ID: 32910661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission.
    Sapienza L; Davanço M; Badolato A; Srinivasan K
    Nat Commun; 2015 Jul; 6():7833. PubMed ID: 26211442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electric field induced removal of the biexciton binding energy in a single quantum dot.
    Reimer ME; van Kouwen MP; Hidma AW; van Weert MH; Bakkers EP; Kouwenhoven LP; Zwiller V
    Nano Lett; 2011 Feb; 11(2):645-50. PubMed ID: 21226507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.