These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 14611524)

  • 1. Cherenkov effect as a probe of photonic nanostructures.
    GarcĂ­a de Abajo FJ; Pattantyus-Abraham AG; Zabala N; Rivacoba A; Wolf MO; Echenique PM
    Phys Rev Lett; 2003 Oct; 91(14):143902. PubMed ID: 14611524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thickness measurements using photonic modes in monochromated electron energy-loss spectroscopy.
    Yurtsever A; Couillard M; Hyun JK; Muller DA
    Microsc Microanal; 2014 Jun; 20(3):723-30. PubMed ID: 24612729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast electrons interacting with a natural hyperbolic medium: bismuth telluride.
    Shekhar P; Pendharker S; Vick D; Malac M; Jacob Z
    Opt Express; 2019 Mar; 27(5):6970-6975. PubMed ID: 30876271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wide-angle coupling into rod-type photonic crystals with ultralow reflectance.
    Botten LC; White TP; de Sterke CM; McPhedran RC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026603. PubMed ID: 17025553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron energy loss and Smith-Purcell radiation in two- and three-dimensional photonic crystals.
    Ochiai T; Ohtaka K
    Opt Express; 2005 Sep; 13(19):7683-98. PubMed ID: 19498796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light exiting from real photonic band gap crystals is diffuse and strongly directional.
    Koenderink AF; Vos WL
    Phys Rev Lett; 2003 Nov; 91(21):213902. PubMed ID: 14683302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct determination of photonic band structure for waveguiding modes in two-dimensional photonic crystals.
    Inoue S; Yokoyama S; Aoyagi Y
    Opt Express; 2008 Feb; 16(4):2461-8. PubMed ID: 18542325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct wide-angle measurement of a photonic band structure in a three-dimensional photonic crystal using infrared Fourier imaging spectroscopy.
    Chen L; Lopez-Garcia M; Taverne MP; Zheng X; Ho YD; Rarity J
    Opt Lett; 2017 Apr; 42(8):1584-1587. PubMed ID: 28409804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic band structures of colloidal crystals measured with angle-resolved reflection spectroscopy.
    Ishii M; Harada M; Tsukigase A; Nakamura H
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):224-30. PubMed ID: 17258899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal higher-lying band gaps for photonic crystals with large dielectric contrast.
    Chern RL; Chao SD
    Opt Express; 2008 Oct; 16(21):16600-8. PubMed ID: 18852769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation of phase contrast formed by inelastically scattered electrons.
    Kimoto K; Matsui Y
    Ultramicroscopy; 2003 Sep; 96(3-4):335-42. PubMed ID: 12871799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some effects of electron channeling on electron energy loss spectroscopy.
    Kirkland EJ
    Ultramicroscopy; 2005 Feb; 102(3):199-207. PubMed ID: 15639350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EELS at very high energy losses.
    MacLaren I; Annand KJ; Black C; Craven AJ
    Microscopy (Oxf); 2018 Mar; 67(suppl_1):i78-i85. PubMed ID: 29036593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of photonic bands of one-dimensional photonic crystals containing epsilon-near-zero metamaterials.
    Lee YG; Kee CS
    J Phys Condens Matter; 2019 Jan; 31(2):025701. PubMed ID: 30511648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband Enhancement of Cherenkov Radiation Using Dispersionless Plasmons.
    Hu H; Lin X; Liu D; Chen H; Zhang B; Luo Y
    Adv Sci (Weinh); 2022 Sep; 9(26):e2200538. PubMed ID: 35863914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free electrons and ionic liquids: study of excited states by means of electron-energy loss spectroscopy and the density functional theory multireference configuration interaction method.
    Regeta K; Bannwarth C; Grimme S; Allan M
    Phys Chem Chem Phys; 2015 Jun; 17(24):15771-80. PubMed ID: 26018044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional Green's function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length.
    Asatryan AA; Busch K; McPhedran RC; Botten LC; de Sterke CM; Nicorovici NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046612. PubMed ID: 11308973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The triplet state of cytosine and its derivatives: electron impact and quantum chemical study.
    Abouaf R; Pommier J; Dunet H; Quan P; Nam PC; Nguyen MT
    J Chem Phys; 2004 Dec; 121(23):11668-74. PubMed ID: 15634133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of Cherenkov radiation trapped by a soliton in photonic-crystal fibers.
    Liu H; Dai Y; Xu C; Wu J; Xu K; Li Y; Hong X; Lin J
    Opt Lett; 2010 Dec; 35(23):4042-4. PubMed ID: 21124606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imitating the Cherenkov radiation in backward directions using one-dimensional photonic wires.
    Ochiai T
    Opt Express; 2010 Jun; 18(13):14165-72. PubMed ID: 20588550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.