These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 14611610)

  • 1. Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect.
    Pecharsky VK; Holm AP; Gschneidner KA; Rink R
    Phys Rev Lett; 2003 Nov; 91(19):197204. PubMed ID: 14611610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant direct and inverse magnetocaloric effect linked to the same forward martensitic transformation.
    Pérez-Landazábal JI; Recarte V; Sánchez-Alarcos V; Beato-López JJ; Rodríguez-Velamazán JA; Sánchez-Marcos J; Gómez-Polo C; Cesari E
    Sci Rep; 2017 Oct; 7(1):13328. PubMed ID: 29042659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2.
    Morellon L; Arnold Z; Magen C; Ritter C; Prokhnenko O; Skorokhod Y; Algarabel PA; Ibarra MR; Kamarad J
    Phys Rev Lett; 2004 Sep; 93(13):137201. PubMed ID: 15524753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The magnetocaloric effect and critical behaviour of the Mn(0.94)Ti(0.06)CoGe alloy.
    Shamba P; Wang JL; Debnath JC; Kennedy SJ; Zeng R; Din MF; Hong F; Cheng ZX; Studer AJ; Dou SX
    J Phys Condens Matter; 2013 Feb; 25(5):056001. PubMed ID: 23262456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making and breaking covalent bonds across the magnetic transition in the giant magnetocaloric material Gd5(Si2Ge2).
    Choe W; Pecharsky VK; Pecharsky AO; Gschneidner KA; Young VG; Miller GJ
    Phys Rev Lett; 2000 May; 84(20):4617-20. PubMed ID: 10990754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A giant magnetocaloric effect with a tunable temperature transition close to room temperature in Na-deficient La0.8Na0.2-x□xMnO3 manganites.
    Wali M; Skini R; Khlifi M; Dhahri E; Hlil EK
    Dalton Trans; 2015 Jul; 44(28):12796-803. PubMed ID: 26091252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of grain constraint on the field requirements for magnetocaloric effect in Ni
    Bruno NM; Huang YJ; Dennis CL; Li JG; Shull RD; Ross JH; Chumlyakov YI; Karaman I
    J Appl Phys; 2016 Aug; 120(7):. PubMed ID: 28781380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-induced three-dimensional ferromagnetic correlations in the giant magnetocaloric compound Gd5Ge4.
    Magen C; Arnold Z; Morellon L; Skorokhod Y; Algarabel PA; Ibarra MR; Kamarad J
    Phys Rev Lett; 2003 Nov; 91(20):207202. PubMed ID: 14683388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field and temperature induced magnetic transition in Gd5Sn4: a giant magnetocaloric material.
    Ryan DH; Elouneg-Jamróz M; van Lierop J; Altounian Z; Wang HB
    Phys Rev Lett; 2003 Mar; 90(11):117202. PubMed ID: 12688962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The magnetocaloric effect at the first-order magneto-elastic phase transition.
    Basso V
    J Phys Condens Matter; 2011 Jun; 23(22):226004. PubMed ID: 21576763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning structural instability toward enhanced magnetocaloric effect around room temperature in MnCo(1-x)Zn(x)Ge.
    Choudhury D; Suzuki T; Tokura Y; Taguchi Y
    Sci Rep; 2014 Dec; 4():7544. PubMed ID: 25519919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the Magnetocaloric Effect in Low Applied Magnetic Fields in LnOHCO
    Dixey RJC; Saines PJ
    Inorg Chem; 2018 Oct; 57(20):12543-12551. PubMed ID: 30256623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quadrupolar ordering and exotic magnetocaloric effect in RB
    Song MS; Cho KK; Kang BY; Lee SB; Cho BK
    Sci Rep; 2020 Jan; 10(1):803. PubMed ID: 31964946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Magnetocaloric Effect in Ni-Mn-Ga Microwires.
    Qian M; Zhang X; Wei L; Martin P; Sun J; Geng L; Scott TB; Peng HX
    Sci Rep; 2018 Nov; 8(1):16574. PubMed ID: 30410120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the instability of the giant direct magnetocaloric effect in CoMn
    Bruno NM; Yuce S
    Sci Rep; 2020 Aug; 10(1):14211. PubMed ID: 32848195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Approach for (Mn,Fe)
    He A; Svitlyk V; Mozharivskyj Y
    Inorg Chem; 2017 Mar; 56(5):2827-2833. PubMed ID: 28195712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition-metal-based magnetic refrigerants for room-temperature applications.
    Tegus O; Brück E; Buschow KH; de Boer FR
    Nature; 2002 Jan; 415(6868):150-2. PubMed ID: 11805828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetocaloric properties of TbN, DyN and HoN nanopowders prepared by the plasma arc discharge method.
    Shinde KP; Jang SH; Kim JW; Kim DS; Ranot M; Chung KC
    Dalton Trans; 2015 Dec; 44(47):20386-91. PubMed ID: 26492221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetocaloric effect in potassium doped lanthanum manganite perovskites prepared by a pyrophoric method.
    Das S; Dey TK
    J Phys Condens Matter; 2006 Aug; 18(32):7629-41. PubMed ID: 21690875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant and reversible low field magnetocaloric effect in LiHoF
    Xie H; Tian L; Chen Q; Sun H; Gao X; Li Z; Mo Z; Shen J
    Dalton Trans; 2021 Dec; 50(47):17697-17702. PubMed ID: 34811565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.